This is the code of paper ``Contrastive Coding for Active Learning under Class Distribution Mismatch'' with python.

Related tags

Deep LearningCCAL
Overview

Contrastive Coding for Active Learning under Class Distribution Mismatch

Official PyTorch implementation of ["Contrastive Coding for Active Learning under Class Distribution Mismatch"]( ICCV2021)

1. Requirements

Environments

Currently, requires following packages.

  • CUDA 10.1+
  • python == 3.7.9
  • pytorch == 1.7.1
  • torchvision == 0.8.2
  • scikit-learn == 0.24.0
  • tensorboardx == 2.1
  • matplotlib == 3.3.3
  • numpy == 1.19.2
  • scipy == 1.5.3
  • apex == 0.1
  • diffdist == 0.1
  • pytorch-gradual-warmup-lr packages

Datasets

For CIFAR10 and CIFAR100, we provide a function to automatically download and preprocess the data, you can also download the datasets from the link, and please download it to ~/data.

2. Training

Currently, all code examples are assuming distributed launch with 4 multi GPUs. To run the code with single GPU, remove -m torch.distributed.launch --nproc_per_node=4.

Semantic feature extraction

To train semantic feature extraction in the paper, run this command:

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 contrast_main.py --mismatch 0.8 --dataset <DATASET> --model <NETWORK> --mode senmatic --shift_trans_type none --batch_size 32 --epoch <EPOCH> --logdir './model/semantic'
  • Option
  • For CIFAR10, set --datatset cifar10, else set --datatset cifar100.
  • In our experiment, we set --epoch 700 in cfar10 and --epoch 2000 in cifar100 .
  • And we set mismatch = 0.2, 0.4, 0.6, 0.8.

Distinctive feature extraction

To train distinctive feature extraction in the paper, run this command:

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 contrast_main.py --mismatch 0.8 --dataset <DATASET> --model <NETWORK> --mode feature --shift_trans_type rotation --batch_size 32 --epoch 700 --logdir './model/distinctive'
  • Option
  • For CIFAR10, set --datatset cifar10, else set --datatset cifar100.
  • In our experiment, we set --epoch 700 in cifar10 and cifar100 .
  • And we set mismatch = 0.2, 0.4, 0.6, 0.8.

Joint query strategy

To select samples from unlabeled dataset in the paper, run this command:

CUDA_VISIBLE_DEVICES=0 python active_main.py --mode eval --k 100.0 --t 0.9 --dataset <DATASET> --model <NETWORK> --mismatch <MISMATCH> --target <INT> --shift_trans_type rotation --print_score --ood_samples 10 --resize_factor 0.54 --resize_fix --load_feature_path './model/distinctive/last.model' --load_senmatic_path './model/semantic/last.model'  --load_path './model'
  • Option
  • For CIFAR10, set --datatset cifar10, else set --datatset cifar100.
  • The value of mismatch is between 0 and 1. In our experiment, we set mismatch = 0.2, 0.4, 0.6, 0.8.
  • --target represents the number of queried samples in each category in each AL cycle.

Then, we can get the index of the samples be queried in each active learning cycle. Take mismatch=0.8 for example,the index of the samples should be added in to CCAL_master/train_classifier/get_index_80.

3. Evaluation

To evaluate the proformance of CCAL, we provide a script to train a classifier, as shown in CCAL_master/train_classifier. , run this command to train the classifier:

CUDA_VISIBLE_DEVICES=0 python main.py --cuda --split <CYCLES> --dataset <DATASET> --mismatch <MISMATCH> --number <NUMBER> --epoch 100
  • Option
  • For CIFAR10, set --datatset cifar10, else set --datatset cifar100.
  • The value of mismatch is between 0 and 1. In our experiment, we set mismatch = 0.2, 0.4, 0.6, 0.8. The value of mismatch should be the same as before.
  • --number indicates the cycle of active learning.
  • --epoch indicates the epochs that training continues in each active learning cycle. In our experiment, we set --epoch 100.
  • --split represents the cycles of active learning.

Then, we can get the average of the accuracies over 5 runs(random seed = 0,1,2,3,4,5).

4. Citation

@InProceedings{Du_2021_ICCV,
    author    = {Du, Pan and Zhao, Suyun and Chen, Hui and Chai, Shuwen and Chen, Hong and Li, Cuiping},
    title     = {Contrastive Coding for Active Learning Under Class Distribution Mismatch},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {8927-8936}
}

5. Reference

@inproceedings{tack2020csi,
  title={CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances},
  author={Jihoon Tack and Sangwoo Mo and Jongheon Jeong and Jinwoo Shin},
  booktitle={Advances in Neural Information Processing Systems},
  year={2020}
}
Analysis of Antarctica sequencing samples contaminated with SARS-CoV-2

Analysis of SARS-CoV-2 reads in sequencing of 2018-2019 Antarctica samples in PRJNA692319 The samples analyzed here are described in this preprint, wh

Jesse Bloom 4 Feb 09, 2022
Bagua is a flexible and performant distributed training algorithm development framework.

Bagua is a flexible and performant distributed training algorithm development framework.

786 Dec 17, 2022
Official implementation of particle-based models (GNS and DPI-Net) on the Physion dataset.

Physion: Evaluating Physical Prediction from Vision in Humans and Machines [paper] Daniel M. Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiao-Y

Hsiao-Yu Fish Tung 18 Dec 19, 2022
Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Deep-rPPG: Camera-based pulse estimation using deep learning tools Deep learning (neural network) based remote photoplethysmography: how to extract pu

Terbe Dániel 138 Dec 17, 2022
A Pytorch loader for MVTecAD dataset.

MVTecAD A Pytorch loader for MVTecAD dataset. It strictly follows the code style of common Pytorch datasets, such as torchvision.datasets.CIFAR10. The

Jiyuan 1 Dec 27, 2021
FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

HKBU High Performance Machine Learning Lab 6 Nov 18, 2022
[CVPR 2021] Monocular depth estimation using wavelets for efficiency

Single Image Depth Prediction with Wavelet Decomposition Michaël Ramamonjisoa, Michael Firman, Jamie Watson, Vincent Lepetit and Daniyar Turmukhambeto

Niantic Labs 205 Jan 02, 2023
Plato: A New Framework for Federated Learning Research

a new software framework to facilitate scalable federated learning research.

System <a href=[email protected] Lab"> 192 Jan 05, 2023
RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation (CIKM'17)

RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation This is the implementation of RATE: Overcoming Noise and Spar

Yu Zhang 5 Feb 10, 2022
2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation

2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation Authors: Ge-Peng Ji*, Yu-Cheng Chou*, Deng-Ping Fan, Geng Che

Ge-Peng Ji (Daniel) 85 Dec 30, 2022
Implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

PRP Introduction This is the implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

yuanyao366 39 Dec 29, 2022
A forwarding MPI implementation that can use any other MPI implementation via an MPI ABI

MPItrampoline MPI wrapper library: MPI trampoline library: MPI integration tests: MPI is the de-facto standard for inter-node communication on HPC sys

Erik Schnetter 31 Dec 22, 2022
Implementation of momentum^2 teacher

Momentum^2 Teacher: Momentum Teacher with Momentum Statistics for Self-Supervised Learning Requirements All experiments are done with python3.6, torch

jemmy li 121 Sep 26, 2022
SARS-Cov-2 Recombinant Finder for fasta sequences

Sc2rf - SARS-Cov-2 Recombinant Finder Pronounced: Scarf What's this? Sc2rf can search genome sequences of SARS-CoV-2 for potential recombinants - new

Lena Schimmel 41 Oct 03, 2022
The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble

Wordle RL The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble I know there are more deterministic

Aditya Arora 3 Feb 22, 2022
docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

Mindee 1.5k Jan 01, 2023
neural image generation

pixray Pixray is an image generation system. It combines previous ideas including: Perception Engines which uses image augmentation and iteratively op

dribnet 398 Dec 17, 2022
Code for CoMatch: Semi-supervised Learning with Contrastive Graph Regularization

CoMatch: Semi-supervised Learning with Contrastive Graph Regularization (Salesforce Research) This is a PyTorch implementation of the CoMatch paper [B

Salesforce 107 Dec 14, 2022
Deep Q-learning for playing chrome dino game

[PYTORCH] Deep Q-learning for playing Chrome Dino

Viet Nguyen 68 Dec 05, 2022
Combine Tacotron2 and Hifi GAN to generate speech from text

EndToEndTextToSpeech Combine Tacotron2 and Hifi GAN to generate speech from text Download weights Hifi GAN - hifi_gan/checkpoint/ : pretrain 2.5M ste

Phạm Quốc Huy 1 Dec 18, 2021