[PAMI 2020] Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation

Overview

Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation

This repository contains the source code for the paper Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation.

Abstract

We present an approach for jointly matching and segmenting object instances of the same category within a collection of images. In contrast to existing algorithms that tackle the tasks of semantic matching and object co-segmentation in isolation, our method exploits the complementary nature of the two tasks. The key insights of our method are two-fold. First, the estimated dense correspondence fields from semantic matching provide supervision for object co-segmentation by enforcing consistency between the predicted masks from a pair of images. Second, the predicted object masks from object co-segmentation in turn allow us to reduce the adverse effects due to background clutters for improving semantic matching. Our model is end-to-end trainable and does not require supervision from manually annotated correspondences and object masks. We validate the efficacy of our approach on five benchmark datasets: TSS, Internet, PF-PASCAL, PF-WILLOW, and SPair-71k, and show that our algorithm performs favorably against the state-of-the-art methods on both semantic matching and object co-segmentation tasks.

Citation

If you find our code useful, please consider citing our work using the following bibtex:

@article{MaCoSNet,
    title={Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation},
    author={Chen, Yun-Chun and Lin, Yen-Yu and Yang, Ming-Hsuan and Huang, Jia-Bin},
    journal={IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)},
    year={2020}
}

@inproceedings{WeakMatchNet,
  title={Deep Semantic Matching with Foreground Detection and Cycle-Consistency},
  author={Chen, Yun-Chun and Huang, Po-Hsiang and Yu, Li-Yu and Huang, Jia-Bin and Yang, Ming-Hsuan and Lin, Yen-Yu},
  booktitle={Asian Conference on Computer Vision (ACCV)},
  year={2018}
}

Environment

  • Install Anaconda Python3.7
  • This code is tested on NVIDIA V100 GPU with 16GB memory
pip install -r requirements.txt

Dataset

Training

  • You may determine which dataset to be the training set by changing the $DATASET variable in train.sh
  • You may change the $BATCH_SIZE variable in train.sh to a suitable value based on the GPU memory
  • The trained model will be saved under the trained_models folder
sh train.sh

Evaluation

  • You may determine which dataset to be evaluated by changing the $DATASET variable in eval.sh
  • You may change the $BATCH_SIZE variable in eval.sh to a suitable value based on the GPU memory
sh eval.sh

Acknowledgement

Owner
Yun-Chun Chen
I work on computer vision and robotics.
Yun-Chun Chen
Where2Act: From Pixels to Actions for Articulated 3D Objects

Where2Act: From Pixels to Actions for Articulated 3D Objects The Proposed Where2Act Task. Given as input an articulated 3D object, we learn to propose

Kaichun Mo 69 Nov 28, 2022
Centroid-UNet is deep neural network model to detect centroids from satellite images.

Centroid UNet - Locating Object Centroids in Aerial/Serial Images Introduction Centroid-UNet is deep neural network model to detect centroids from Aer

GIC-AIT 19 Dec 08, 2022
JAX + dataclasses

jax_dataclasses jax_dataclasses provides a wrapper around dataclasses.dataclass for use in JAX, which enables automatic support for: Pytree registrati

Brent Yi 35 Dec 21, 2022
You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks.

AllSet This is the repo for our paper: You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks. We prepared all codes and a subse

Jianhao 51 Dec 24, 2022
A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swar.

Omni-swarm A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swarm Introduction Omni-swarm is a decentralized omn

HKUST Aerial Robotics Group 99 Dec 23, 2022
验证码识别 深度学习 tensorflow 神经网络

captcha_tf2 验证码识别 深度学习 tensorflow 神经网络 使用卷积神经网络,对字符,数字类型验证码进行识别,tensorflow使用2.0以上 目前项目还在更新中,诸多bug,欢迎提出issue和PR, 希望和你一起共同完善项目。 实例demo 训练过程 优化器选择: Adam

5 Apr 28, 2022
Ganilla - Official Pytorch implementation of GANILLA

GANILLA We provide PyTorch implementation for: GANILLA: Generative Adversarial Networks for Image to Illustration Translation. Paper Arxiv Updates (Fe

Samet Hi 462 Dec 05, 2022
A Strong Baseline for Image Semantic Segmentation

A Strong Baseline for Image Semantic Segmentation Introduction This project is an open source semantic segmentation toolbox based on PyTorch. It is ba

Clark He 49 Sep 20, 2022
Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.

opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing

Haoyan Huo 9 Nov 18, 2022
Code repo for "RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network" (Machine Learning and the Physical Sciences workshop in NeurIPS 2021).

RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network An official PyTorch implementation of the RBSRICNN network as desc

Rao Muhammad Umer 6 Nov 14, 2022
This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks

NNProject - DeepMask This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks. Th

189 Nov 16, 2022
The official code repository for examples in the O'Reilly book 'Generative Deep Learning'

Generative Deep Learning Teaching Machines to paint, write, compose and play The official code repository for examples in the O'Reilly book 'Generativ

David Foster 1.3k Dec 29, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
Plug and play transformer you can find network structure and official complete code by clicking List

Plug-and-play Module Plug and play transformer you can find network structure and official complete code by clicking List The following is to quickly

8 Mar 27, 2022
PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

DLR-RM 4.7k Jan 01, 2023
Code for the paper "Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks"

ON-LSTM This repository contains the code used for word-level language model and unsupervised parsing experiments in Ordered Neurons: Integrating Tree

Yikang Shen 572 Nov 21, 2022
Arch-Net: Model Distillation for Architecture Agnostic Model Deployment

Arch-Net: Model Distillation for Architecture Agnostic Model Deployment The official implementation of Arch-Net: Model Distillation for Architecture A

MEGVII Research 22 Jan 05, 2023
Scenic: A Jax Library for Computer Vision and Beyond

Scenic Scenic is a codebase with a focus on research around attention-based models for computer vision. Scenic has been successfully used to develop c

Google Research 1.6k Dec 27, 2022
vit for few-shot classification

Few-Shot ViT Requirements PyTorch (= 1.9) TorchVision timm (latest) einops tqdm numpy scikit-learn scipy argparse tensorboardx Pretrained Checkpoints

Martin Dong 26 Nov 30, 2022
Stock-history-display - something like a easy yearly review for your stock performance

Stock History Display Available on Heroku: https://stock-history-display.herokua

LiaoJJ 1 Jan 07, 2022