Scenic: A Jax Library for Computer Vision and Beyond

Overview

Scenic

Scenic is a codebase with a focus on research around attention-based models for computer vision. Scenic has been successfully used to develop classification, segmentation, and detection models for multiple modalities including images, video, audio, and multimodal combinations of them.

More precisely, Scenic is a (i) set of shared light-weight libraries solving tasks commonly encountered tasks when training large-scale (i.e. multi-device, multi-host) vision models; and (ii) a number of projects containing fully fleshed out problem-specific training and evaluation loops using these libraries.

Scenic is developed in JAX and uses Flax.

What we offer

Among others Scenic provides

  • Boilerplate code for launching experiments, summary writing, logging, profiling, etc;
  • Optimized training and evaluation loops, losses, metrics, bi-partite matchers, etc;
  • Input-pipelines for popular vision datasets;
  • Baseline models, including strong non-attentional baselines.

Papers using Scenic

Scenic can be used to reproduce the results from the following papers, which were either developed using Scenic, or have been reimplemented in Scenic:

Philosophy

Scenic aims to facilitate rapid prototyping of large-scale vision models. To keep the code simple to understand and extend we prefer forking and copy-pasting over adding complexity or increasing abstraction. Only when functionality proves to be widely useful across many models and tasks it may be upstreamed to Scenic's shared libraries.

Code structure

Shared libraries provided by Scenic are split into:

  • dataset_lib: Implements IO pipelines for loading and pre-processing data for common Computer Vision tasks and benchmarks. All pipelines are designed to be scalable and support multi-host and multi-device setups, taking care of dividing data among multiple hosts, incomplete batches, caching, pre-fetching, etc.
  • model_lib: Provides (i) several abstract model interfaces (e.g. ClassificationModel or SegmentationModel in model_lib.base_models) with task-specific losses and metrics; (ii) neural network layers in model_lib.layers, focusing on efficient implementation of attention and transfomer layers; and (iii) accelerator-friedly implementations of bipartite matching algorithms in model_lib.matchers.
  • train_lib: Provides tools for constructing training loops and implements several example trainers (classification trainer and segmentation trainer).
  • common_lib: Utilities that do not belong anywhere else.

Projects

Models built on top of Scenic exist as separate projects. Model-specific code such as configs, layers, losses, network architectures, or training and evaluation loops exist as separate projects.

Common baselines such as a ResNet or a Visual Transformer (ViT) are implemented in the projects/baselines project. Forking this directory is a good starting point for new projects.

There is no one-fits-all recipe for how much code should be re-used by projects. Projects can fall anywhere on the wide spectrum of code re-use: from defining new configs for an existing model to redefining models, training loop, logging, etc.

Getting started

  • See projects/baselines/README.md for a walk-through baseline models and instructions on how to run the code.
  • If you would like to to contribute to Scenic, please check out the Philisophy, Code structure and Contributing sections. Should your contribution be a part of the shared libraries, please send us a pull request!

Quick start

Download the code from GitHub

git clone https://github.com/google-research/scenic.git
cd scenic
pip install .

and run training for ViT on ImageNet:

python main.py -- \
  --config=projects/baselines/configs/imagenet/imagenet_vit_config.py \
  --workdir=./

Disclaimer: This is not an official Google product.

Owner
Google Research
Google Research
Object tracking implemented with YOLOv4, DeepSort, and TensorFlow.

Object tracking implemented with YOLOv4, DeepSort, and TensorFlow. YOLOv4 is a state of the art algorithm that uses deep convolutional neural networks to perform object detections. We can take the ou

The AI Guy 1.1k Dec 29, 2022
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022
Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm

DeCLIP Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm. Our paper is available in arxiv Updates ** Ou

Sense-GVT 470 Dec 30, 2022
The code for paper "Contrastive Spatio-Temporal Pretext Learning for Self-supervised Video Representation" which is accepted by AAAI 2022

Contrastive Spatio Temporal Pretext Learning for Self-supervised Video Representation (AAAI 2022) The code for paper "Contrastive Spatio-Temporal Pret

8 Jun 30, 2022
NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in production.

NVIDIA Merlin NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs. It enables data scientists, machine

419 Jan 03, 2023
PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法

PASSL Introduction PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to acce

186 Dec 29, 2022
Convenient tool for speeding up the intern/officer review process.

icpc-app-screen Convenient tool for speeding up the intern/officer applicant review process. Eliminates the pain from reading application responses of

1 Oct 30, 2021
An implementation of Deep Graph Infomax (DGI) in PyTorch

DGI Deep Graph Infomax (Veličković et al., ICLR 2019): https://arxiv.org/abs/1809.10341 Overview Here we provide an implementation of Deep Graph Infom

Petar Veličković 491 Jan 03, 2023
ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

Yanda Meng 14 May 13, 2022
Real-time pose estimation accelerated with NVIDIA TensorRT

trt_pose Want to detect hand poses? Check out the new trt_pose_hand project for real-time hand pose and gesture recognition! trt_pose is aimed at enab

NVIDIA AI IOT 803 Jan 06, 2023
Milano is a tool for automating hyper-parameters search for your models on a backend of your choice.

Milano (This is a research project, not an official NVIDIA product.) Documentation https://nvidia.github.io/Milano Milano (Machine learning autotuner

NVIDIA Corporation 147 Dec 17, 2022
A super lightweight Lagrangian model for calculating millions of trajectories using ERA5 data

Easy-ERA5-Trck Easy-ERA5-Trck Galleries Install Usage Repository Structure Module Files Version iteration Easy-ERA5-Trck is a super lightweight Lagran

Zhenning Li 26 Nov 19, 2022
Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

Spatio-Temporal Entropy Model A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression. More details can

16 Nov 28, 2022
Semantic Scholar's Author Disambiguation Algorithm & Evaluation Suite

S2AND This repository provides access to the S2AND dataset and S2AND reference model described in the paper S2AND: A Benchmark and Evaluation System f

AI2 54 Nov 28, 2022
This repository contains the code for TACL2021 paper: SummaC: Re-Visiting NLI-based Models for Inconsistency Detection in Summarization

SummaC: Summary Consistency Detection This repository contains the code for TACL2021 paper: SummaC: Re-Visiting NLI-based Models for Inconsistency Det

Philippe Laban 24 Jan 03, 2023
Image-to-Image Translation with Conditional Adversarial Networks (Pix2pix) implementation in keras

pix2pix-keras Pix2pix implementation in keras. Original paper: Image-to-Image Translation with Conditional Adversarial Networks (pix2pix) Paper Author

William Falcon 141 Dec 30, 2022
3.8% and 18.3% on CIFAR-10 and CIFAR-100

Wide Residual Networks This code was used for experiments with Wide Residual Networks (BMVC 2016) http://arxiv.org/abs/1605.07146 by Sergey Zagoruyko

Sergey Zagoruyko 1.2k Dec 29, 2022
This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection, built on SECOND.

3D-CVF This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object

YecheolKim 97 Dec 20, 2022
a Lightweight library for sequential learning agents, including reinforcement learning

SaLinA: SaLinA - A Flexible and Simple Library for Learning Sequential Agents (including Reinforcement Learning) TL;DR salina is a lightweight library

Facebook Research 405 Dec 17, 2022
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

2.3k Jan 09, 2023