Scenic: A Jax Library for Computer Vision and Beyond

Overview

Scenic

Scenic is a codebase with a focus on research around attention-based models for computer vision. Scenic has been successfully used to develop classification, segmentation, and detection models for multiple modalities including images, video, audio, and multimodal combinations of them.

More precisely, Scenic is a (i) set of shared light-weight libraries solving tasks commonly encountered tasks when training large-scale (i.e. multi-device, multi-host) vision models; and (ii) a number of projects containing fully fleshed out problem-specific training and evaluation loops using these libraries.

Scenic is developed in JAX and uses Flax.

What we offer

Among others Scenic provides

  • Boilerplate code for launching experiments, summary writing, logging, profiling, etc;
  • Optimized training and evaluation loops, losses, metrics, bi-partite matchers, etc;
  • Input-pipelines for popular vision datasets;
  • Baseline models, including strong non-attentional baselines.

Papers using Scenic

Scenic can be used to reproduce the results from the following papers, which were either developed using Scenic, or have been reimplemented in Scenic:

Philosophy

Scenic aims to facilitate rapid prototyping of large-scale vision models. To keep the code simple to understand and extend we prefer forking and copy-pasting over adding complexity or increasing abstraction. Only when functionality proves to be widely useful across many models and tasks it may be upstreamed to Scenic's shared libraries.

Code structure

Shared libraries provided by Scenic are split into:

  • dataset_lib: Implements IO pipelines for loading and pre-processing data for common Computer Vision tasks and benchmarks. All pipelines are designed to be scalable and support multi-host and multi-device setups, taking care of dividing data among multiple hosts, incomplete batches, caching, pre-fetching, etc.
  • model_lib: Provides (i) several abstract model interfaces (e.g. ClassificationModel or SegmentationModel in model_lib.base_models) with task-specific losses and metrics; (ii) neural network layers in model_lib.layers, focusing on efficient implementation of attention and transfomer layers; and (iii) accelerator-friedly implementations of bipartite matching algorithms in model_lib.matchers.
  • train_lib: Provides tools for constructing training loops and implements several example trainers (classification trainer and segmentation trainer).
  • common_lib: Utilities that do not belong anywhere else.

Projects

Models built on top of Scenic exist as separate projects. Model-specific code such as configs, layers, losses, network architectures, or training and evaluation loops exist as separate projects.

Common baselines such as a ResNet or a Visual Transformer (ViT) are implemented in the projects/baselines project. Forking this directory is a good starting point for new projects.

There is no one-fits-all recipe for how much code should be re-used by projects. Projects can fall anywhere on the wide spectrum of code re-use: from defining new configs for an existing model to redefining models, training loop, logging, etc.

Getting started

  • See projects/baselines/README.md for a walk-through baseline models and instructions on how to run the code.
  • If you would like to to contribute to Scenic, please check out the Philisophy, Code structure and Contributing sections. Should your contribution be a part of the shared libraries, please send us a pull request!

Quick start

Download the code from GitHub

git clone https://github.com/google-research/scenic.git
cd scenic
pip install .

and run training for ViT on ImageNet:

python main.py -- \
  --config=projects/baselines/configs/imagenet/imagenet_vit_config.py \
  --workdir=./

Disclaimer: This is not an official Google product.

Owner
Google Research
Google Research
A style-based Quantum Generative Adversarial Network

Style-qGAN A style based Quantum Generative Adversarial Network (style-qGAN) model for Monte Carlo event generation. Tutorial We have prepared a noteb

9 Nov 24, 2022
Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation".

I2V-GAN This repository is the official Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation". Traffic

69 Dec 31, 2022
This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm.

This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm. It contains the code to reproduce the results presented in the original paper: https://arxiv.org/abs/2112.0

Saman Khamesian 6 Dec 13, 2022
DiAne is a smart fuzzer for IoT devices

Diane Diane is a fuzzer for IoT devices. Diane works by identifying fuzzing triggers in the IoT companion apps to produce valid yet under-constrained

seclab 28 Jan 04, 2023
Implementation of "Selection via Proxy: Efficient Data Selection for Deep Learning" from ICLR 2020.

Selection via Proxy: Efficient Data Selection for Deep Learning This repository contains a refactored implementation of "Selection via Proxy: Efficien

Stanford Future Data Systems 70 Nov 16, 2022
๐Ÿ’ƒ VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena

๐Ÿ’ƒ VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena.

Heidelberg-NLP 17 Nov 07, 2022
Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 904 Dec 21, 2022
Model Zoo for AI Model Efficiency Toolkit

We provide a collection of popular neural network models and compare their floating point and quantized performance.

Qualcomm Innovation Center 137 Jan 03, 2023
A Model for Natural Language Attack on Text Classification and Inference

TextFooler A Model for Natural Language Attack on Text Classification and Inference This is the source code for the paper: Jin, Di, et al. "Is BERT Re

Di Jin 418 Dec 16, 2022
Statsmodels: statistical modeling and econometrics in Python

About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an

statsmodels 8.1k Jan 02, 2023
pytorch implementation of the ICCV'21 paper "MVTN: Multi-View Transformation Network for 3D Shape Recognition"

MVTN: Multi-View Transformation Network for 3D Shape Recognition (ICCV 2021) By Abdullah Hamdi, Silvio Giancola, Bernard Ghanem Paper | Video | Tutori

Abdullah Hamdi 64 Jan 03, 2023
Code for paper "ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation"

ASAP-Net This project implements ASAP-Net of paper ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation (BMVC2020). Overview We i

Hanwen Cao 26 Aug 25, 2022
[Machine Learning Engineer Basic Guide] ๋ถ€์ŠคํŠธ์บ ํ”„ AI Tech - Product Serving ์ž๋ฃŒ

Boostcamp-AI-Tech-Product-Serving ๋ถ€์ŠคํŠธ์บ ํ”„ AI Tech - Product Serving ์ž๋ฃŒ Repository ๊ตฌ์กฐ part1(MLOps ๊ฐœ๋ก , Model Serving, ๋จธ์‹ ๋Ÿฌ๋‹ ํ”„๋กœ์ ํŠธ ๋ผ์ดํ”„ ์‚ฌ์ดํด์€ ๋ณ„๋„์˜ ์ฝ”๋“œ๊ฐ€ ์—†์œผ๋ฉฐ, part

Sung Yun Byeon 269 Dec 21, 2022
Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images

SASSnet Code for paper: Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images(MICCAI 2020) Our code is origin from UA-MT You can fin

klein 125 Jan 03, 2023
DSAC* for Visual Camera Re-Localization (RGB or RGB-D)

DSAC* for Visual Camera Re-Localization (RGB or RGB-D) Introduction Installation Data Structure Supported Datasets 7Scenes 12Scenes Cambridge Landmark

Visual Learning Lab 143 Dec 22, 2022
Code + pre-trained models for the paper Keeping Your Eye on the Ball Trajectory Attention in Video Transformers

Motionformer This is an official pytorch implementation of paper Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers. In this rep

Facebook Research 192 Dec 23, 2022
Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning This repository is official Tensorflow implementation of paper: Ensemb

Seunghyun Lee 12 Oct 18, 2022
A basic duplicate image detection service using perceptual image hash functions and nearest neighbor search, implemented using faiss, fastapi, and imagehash

Duplicate Image Detection Getting Started Install dependencies pip install -r requirements.txt Run service python main.py Testing Test with pytest How

Matthew Podolak 21 Nov 11, 2022
Algorithmic trading with deep learning experiments

Deep-Trading Algorithmic trading with deep learning experiments. Now released part one - simple time series forecasting. I plan to implement more soph

Alex Honchar 1.4k Jan 02, 2023
Udacity Suse Cloud Native Foundations Scholarship Course Walkthrough

SUSE Cloud Native Foundations Scholarship Udacity is collaborating with SUSE, a global leader in true open source solutions, to empower developers and

Shivansh Srivastava 34 Oct 18, 2022