Object tracking implemented with YOLOv4, DeepSort, and TensorFlow.

Overview

yolov4-deepsort

license Open In Colab

Object tracking implemented with YOLOv4, DeepSort, and TensorFlow. YOLOv4 is a state of the art algorithm that uses deep convolutional neural networks to perform object detections. We can take the output of YOLOv4 feed these object detections into Deep SORT (Simple Online and Realtime Tracking with a Deep Association Metric) in order to create a highly accurate object tracker.

Demo of Object Tracker on Persons

Demo of Object Tracker on Cars

Getting Started

To get started, install the proper dependencies either via Anaconda or Pip. I recommend Anaconda route for people using a GPU as it configures CUDA toolkit version for you.

Conda (Recommended)

# Tensorflow CPU
conda env create -f conda-cpu.yml
conda activate yolov4-cpu

# Tensorflow GPU
conda env create -f conda-gpu.yml
conda activate yolov4-gpu

Pip

(TensorFlow 2 packages require a pip version >19.0.)

# TensorFlow CPU
pip install -r requirements.txt

# TensorFlow GPU
pip install -r requirements-gpu.txt

Nvidia Driver (For GPU, if you are not using Conda Environment and haven't set up CUDA yet)

Make sure to use CUDA Toolkit version 10.1 as it is the proper version for the TensorFlow version used in this repository. https://developer.nvidia.com/cuda-10.1-download-archive-update2

Downloading Official YOLOv4 Pre-trained Weights

Our object tracker uses YOLOv4 to make the object detections, which deep sort then uses to track. There exists an official pre-trained YOLOv4 object detector model that is able to detect 80 classes. For easy demo purposes we will use the pre-trained weights for our tracker. Download pre-trained yolov4.weights file: https://drive.google.com/open?id=1cewMfusmPjYWbrnuJRuKhPMwRe_b9PaT

Copy and paste yolov4.weights from your downloads folder into the 'data' folder of this repository.

If you want to use yolov4-tiny.weights, a smaller model that is faster at running detections but less accurate, download file here: https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-tiny.weights

Running the Tracker with YOLOv4

To implement the object tracking using YOLOv4, first we convert the .weights into the corresponding TensorFlow model which will be saved to a checkpoints folder. Then all we need to do is run the object_tracker.py script to run our object tracker with YOLOv4, DeepSort and TensorFlow.

# Convert darknet weights to tensorflow model
python save_model.py --model yolov4 

# Run yolov4 deep sort object tracker on video
python object_tracker.py --video ./data/video/test.mp4 --output ./outputs/demo.avi --model yolov4

# Run yolov4 deep sort object tracker on webcam (set video flag to 0)
python object_tracker.py --video 0 --output ./outputs/webcam.avi --model yolov4

The output flag allows you to save the resulting video of the object tracker running so that you can view it again later. Video will be saved to the path that you set. (outputs folder is where it will be if you run the above command!)

If you want to run yolov3 set the model flag to --model yolov3, upload the yolov3.weights to the 'data' folder and adjust the weights flag in above commands. (see all the available command line flags and descriptions of them in a below section)

Running the Tracker with YOLOv4-Tiny

The following commands will allow you to run yolov4-tiny model. Yolov4-tiny allows you to obtain a higher speed (FPS) for the tracker at a slight cost to accuracy. Make sure that you have downloaded the tiny weights file and added it to the 'data' folder in order for commands to work!

# save yolov4-tiny model
python save_model.py --weights ./data/yolov4-tiny.weights --output ./checkpoints/yolov4-tiny-416 --model yolov4 --tiny

# Run yolov4-tiny object tracker
python object_tracker.py --weights ./checkpoints/yolov4-tiny-416 --model yolov4 --video ./data/video/test.mp4 --output ./outputs/tiny.avi --tiny

Resulting Video

As mentioned above, the resulting video will save to wherever you set the --output command line flag path to. I always set it to save to the 'outputs' folder. You can also change the type of video saved by adjusting the --output_format flag, by default it is set to AVI codec which is XVID.

Example video showing tracking of all coco dataset classes:

Filter Classes that are Tracked by Object Tracker

By default the code is setup to track all 80 or so classes from the coco dataset, which is what the pre-trained YOLOv4 model is trained on. However, you can easily adjust a few lines of code in order to track any 1 or combination of the 80 classes. It is super easy to filter only the person class or only the car class which are most common.

To filter a custom selection of classes all you need to do is comment out line 159 and uncomment out line 162 of object_tracker.py Within the list allowed_classes just add whichever classes you want the tracker to track. The classes can be any of the 80 that the model is trained on, see which classes you can track in the file data/classes/coco.names

This example would allow the classes for person and car to be tracked.

Demo of Object Tracker set to only track the class 'person'

Demo of Object Tracker set to only track the class 'car'

Command Line Args Reference

save_model.py:
  --weights: path to weights file
    (default: './data/yolov4.weights')
  --output: path to output
    (default: './checkpoints/yolov4-416')
  --[no]tiny: yolov4 or yolov4-tiny
    (default: 'False')
  --input_size: define input size of export model
    (default: 416)
  --framework: what framework to use (tf, trt, tflite)
    (default: tf)
  --model: yolov3 or yolov4
    (default: yolov4)
    
 object_tracker.py:
  --video: path to input video (use 0 for webcam)
    (default: './data/video/test.mp4')
  --output: path to output video (remember to set right codec for given format. e.g. XVID for .avi)
    (default: None)
  --output_format: codec used in VideoWriter when saving video to file
    (default: 'XVID)
  --[no]tiny: yolov4 or yolov4-tiny
    (default: 'false')
  --weights: path to weights file
    (default: './checkpoints/yolov4-416')
  --framework: what framework to use (tf, trt, tflite)
    (default: tf)
  --model: yolov3 or yolov4
    (default: yolov4)
  --size: resize images to
    (default: 416)
  --iou: iou threshold
    (default: 0.45)
  --score: confidence threshold
    (default: 0.50)
  --dont_show: dont show video output
    (default: False)
  --info: print detailed info about tracked objects
    (default: False)

References

Huge shoutout goes to hunglc007 and nwojke for creating the backbones of this repository:

Owner
The AI Guy
I love making tutorials for all things machine learning and AI!
The AI Guy
A fast implementation of bss_eval metrics for blind source separation

fast_bss_eval Do you have a zillion BSS audio files to process and it is taking days ? Is your simulation never ending ? Fear no more! fast_bss_eval i

Robin Scheibler 99 Dec 13, 2022
Easy way to add GoogleMaps to Flask applications. maintainer: @getcake

Flask Google Maps Easy to use Google Maps in your Flask application requires Jinja Flask A google api key get here Contribute To contribute with the p

Flask Extensions 611 Dec 05, 2022
PyTorch ,ONNX and TensorRT implementation of YOLOv4

PyTorch ,ONNX and TensorRT implementation of YOLOv4

4.2k Jan 01, 2023
I tried to apply the CAM algorithm to YOLOv4 and it worked.

YOLOV4:You Only Look Once目标检测模型在pytorch当中的实现 2021年2月7日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map得到大幅度提升。 目录 性能情况 Performance 实现的内容 Achievement

55 Dec 05, 2022
[NeurIPS 2021] "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators"

G-PATE This is the official code base for our NeurIPS 2021 paper: "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of T

AI Secure 14 Oct 12, 2022
This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

75 Dec 02, 2022
A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perform basic tasks.

AI_Personal_Voice_Assistant_Using_Python A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perf

Chumui Tripura 1 Oct 30, 2021
Deep Residual Networks with 1K Layers

Deep Residual Networks with 1K Layers By Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Microsoft Research Asia (MSRA). Table of Contents Introduc

Kaiming He 856 Jan 06, 2023
The implementation of the algorithm in the paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020.

DS3L This is the code for paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020. Setups The code is implem

Guolz 36 Oct 19, 2022
A particular navigation route using satellite feed and can help in toll operations & traffic managemen

How about adding some info that can quanitfy the stress on a particular navigation route using satellite feed and can help in toll operations & traffic management The current analysis is on the satel

Ashish Pandey 1 Feb 14, 2022
Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database.

MIMIC-III Benchmarks Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database. Currently, the benchmark data

Chengxi Zang 6 Jan 02, 2023
Context Axial Reverse Attention Network for Small Medical Objects Segmentation

CaraNet: Context Axial Reverse Attention Network for Small Medical Objects Segmentation This repository contains the implementation of a novel attenti

401 Dec 23, 2022
A light and fast one class detection framework for edge devices. We provide face detector, head detector, pedestrian detector, vehicle detector......

A Light and Fast Face Detector for Edge Devices Big News: LFD, which is a big update of LFFD, now is released (2021.03.09). It is strongly recommended

YonghaoHe 1.3k Dec 25, 2022
A PyTorch based deep learning library for drug pair scoring.

Documentation | External Resources | Datasets | Examples ChemicalX is a deep learning library for drug-drug interaction, polypharmacy side effect and

AstraZeneca 597 Dec 30, 2022
This repository contains pre-trained models and some evaluation code for our paper Towards Unsupervised Dense Information Retrieval with Contrastive Learning

Contriever: Towards Unsupervised Dense Information Retrieval with Contrastive Learning This repository contains pre-trained models and some evaluation

Meta Research 207 Jan 08, 2023
Code for the paper "Zero-shot Natural Language Video Localization" (ICCV2021, Oral).

Zero-shot Natural Language Video Localization (ZSNLVL) by Pseudo-Supervised Video Localization (PSVL) This repository is for Zero-shot Natural Languag

Computer Vision Lab. @ GIST 37 Dec 27, 2022
Make your own game in a font!

Project structure. Included is a suite of tools to create font games. Tutorial: For a quick tutorial about how to make your own game go here For devel

Michael Mulet 125 Dec 04, 2022
An inofficial PyTorch implementation of PREDATOR based on KPConv.

PREDATOR: Registration of 3D Point Clouds with Low Overlap An inofficial PyTorch implementation of PREDATOR based on KPConv. The code has been tested

ZhuLifa 14 Aug 03, 2022
NeuPy is a Tensorflow based python library for prototyping and building neural networks

NeuPy v0.8.2 NeuPy is a python library for prototyping and building neural networks. NeuPy uses Tensorflow as a computational backend for deep learnin

Yurii Shevchuk 729 Jan 03, 2023
PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM)

Neuro-Symbolic Sudoku Solver PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM). Please n

Ashutosh Hathidara 60 Dec 10, 2022