SPTAG: A library for fast approximate nearest neighbor search

Overview

SPTAG: A library for fast approximate nearest neighbor search

MIT licensed Build status

SPTAG

SPTAG (Space Partition Tree And Graph) is a library for large scale vector approximate nearest neighbor search scenario released by Microsoft Research (MSR) and Microsoft Bing.

architecture

Introduction

This library assumes that the samples are represented as vectors and that the vectors can be compared by L2 distances or cosine distances. Vectors returned for a query vector are the vectors that have smallest L2 distance or cosine distances with the query vector.

SPTAG provides two methods: kd-tree and relative neighborhood graph (SPTAG-KDT) and balanced k-means tree and relative neighborhood graph (SPTAG-BKT). SPTAG-KDT is advantageous in index building cost, and SPTAG-BKT is advantageous in search accuracy in very high-dimensional data.

How it works

SPTAG is inspired by the NGS approach [WangL12]. It contains two basic modules: index builder and searcher. The RNG is built on the k-nearest neighborhood graph [WangWZTG12, WangWJLZZH14] for boosting the connectivity. Balanced k-means trees are used to replace kd-trees to avoid the inaccurate distance bound estimation in kd-trees for very high-dimensional vectors. The search begins with the search in the space partition trees for finding several seeds to start the search in the RNG. The searches in the trees and the graph are iteratively conducted.

Highlights

  • Fresh update: Support online vector deletion and insertion
  • Distributed serving: Search over multiple machines

Build

Requirements

  • swig >= 3.0
  • cmake >= 3.12.0
  • boost >= 1.67.0

Fast clone

set GIT_LFS_SKIP_SMUDGE=1
git clone https://github.com/microsoft/SPTAG

OR

git config --global filter.lfs.smudge "git-lfs smudge --skip -- %f"
git config --global filter.lfs.process "git-lfs filter-process --skip"

Install

For Linux:

mkdir build
cd build && cmake .. && make

It will generate a Release folder in the code directory which contains all the build targets.

For Windows:

mkdir build
cd build && cmake -A x64 ..

It will generate a SPTAGLib.sln in the build directory. Compiling the ALL_BUILD project in the Visual Studio (at least 2019) will generate a Release directory which contains all the build targets.

For detailed instructions on installing Windows binaries, please see here

Using Docker:

docker build -t sptag .

Will build a docker container with binaries in /app/Release/.

Verify

Run the SPTAGTest (or Test.exe) in the Release folder to verify all the tests have passed.

Usage

The detailed usage can be found in Get started. There is also an end-to-end tutorial for building vector search online service using Python Wrapper in Python Tutorial. The detailed parameters tunning can be found in Parameters.

References

Please cite SPTAG in your publications if it helps your research:

@inproceedings{ChenW21,
  author = {Qi Chen and 
            Bing Zhao and 
            Haidong Wang and 
            Mingqin Li and 
            Chuanjie Liu and 
            Zengzhong Li and 
            Mao Yang and 
            Jingdong Wang},
  title = {SPANN: Highly-efficient Billion-scale Approximate Nearest Neighbor Search},
  booktitle = {35th Conference on Neural Information Processing Systems (NeurIPS 2021)},
  year = {2021}
}

@manual{ChenW18,
  author    = {Qi Chen and
               Haidong Wang and
               Mingqin Li and 
               Gang Ren and
               Scarlett Li and
               Jeffery Zhu and
               Jason Li and
               Chuanjie Liu and
               Lintao Zhang and
               Jingdong Wang},
  title     = {SPTAG: A library for fast approximate nearest neighbor search},
  url       = {https://github.com/Microsoft/SPTAG},
  year      = {2018}
}

@inproceedings{WangL12,
  author    = {Jingdong Wang and
               Shipeng Li},
  title     = {Query-driven iterated neighborhood graph search for large scale indexing},
  booktitle = {ACM Multimedia 2012},
  pages     = {179--188},
  year      = {2012}
}

@inproceedings{WangWZTGL12,
  author    = {Jing Wang and
               Jingdong Wang and
               Gang Zeng and
               Zhuowen Tu and
               Rui Gan and
               Shipeng Li},
  title     = {Scalable k-NN graph construction for visual descriptors},
  booktitle = {CVPR 2012},
  pages     = {1106--1113},
  year      = {2012}
}

@article{WangWJLZZH14,
  author    = {Jingdong Wang and
               Naiyan Wang and
               You Jia and
               Jian Li and
               Gang Zeng and
               Hongbin Zha and
               Xian{-}Sheng Hua},
  title     = {Trinary-Projection Trees for Approximate Nearest Neighbor Search},
  journal   = {{IEEE} Trans. Pattern Anal. Mach. Intell.},
  volume    = {36},
  number    = {2},
  pages     = {388--403},
  year      = {2014
}

Contribute

This project welcomes contributions and suggestions from all the users.

We use GitHub issues for tracking suggestions and bugs.

License

The entire codebase is under MIT license

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Monk - A computer vision toolkit for everyone Why use Monk Issue: Want to begin learning computer vision Solution: Start with Monk's hands-on study ro

Tessellate Imaging 507 Dec 04, 2022
Code for "AutoMTL: A Programming Framework for Automated Multi-Task Learning"

AutoMTL: A Programming Framework for Automated Multi-Task Learning This is the website for our paper "AutoMTL: A Programming Framework for Automated M

Ivy Zhang 40 Dec 04, 2022
Implementation of the Swin Transformer in PyTorch.

Swin Transformer - PyTorch Implementation of the Swin Transformer architecture. This paper presents a new vision Transformer, called Swin Transformer,

597 Jan 03, 2023
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 322 Dec 31, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN in PyTorch Official implementation of StyleCariGAN:Caricature Generation via StyleGAN Feature Map Modulation in PyTorch Requirements PyTo

PeterZhouSZ 49 Oct 31, 2022
Solving SMPL/MANO parameters from keypoint coordinates.

Minimal-IK A simple and naive inverse kinematics solver for MANO hand model, SMPL body model, and SMPL-H body+hand model. Briefly, given joint coordin

Yuxiao Zhou 305 Dec 30, 2022
Source Code for Simulations in the Publication "Can the brain use waves to solve planning problems?"

Code for Simulations in the Publication Can the brain use waves to solve planning problems? Installing Required Python Packages Please use Python vers

EMD Group 2 Jul 01, 2022
Deep Learning and Logical Reasoning from Data and Knowledge

Logic Tensor Networks (LTN) Logic Tensor Network (LTN) is a neurosymbolic framework that supports querying, learning and reasoning with both rich data

171 Dec 29, 2022
MonoScene: Monocular 3D Semantic Scene Completion

MonoScene: Monocular 3D Semantic Scene Completion MonoScene: Monocular 3D Semantic Scene Completion] [arXiv + supp] | [Project page] Anh-Quan Cao, Rao

298 Jan 08, 2023
LSSY量化交易系统

LSSY量化交易系统 该项目是本人3年来研究量化慢慢积累开发的一套系统,属于早期作品慢慢修改而来,仅供学习研究,回测分析,实盘交易部分未公开

55 Oct 04, 2022
[NeurIPS 2020] Blind Video Temporal Consistency via Deep Video Prior

pytorch-deep-video-prior (DVP) Official PyTorch implementation for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior TensorFlo

Yazhou XING 90 Oct 19, 2022
A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python.

c is for Camera A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python. The purpose of this project is to explore and underst

Daniele Procida 146 Sep 26, 2022
Adaptable tools to make reinforcement learning and evolutionary computation algorithms.

Pearl The Parallel Evolutionary and Reinforcement Learning Library (Pearl) is a pytorch based package with the goal of being excellent for rapid proto

38 Jan 01, 2023
Pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021).

Pytorch code for SS-Net This is a pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021). Environment Code is tested

Sun Ran 1 May 18, 2022
Make a surveillance camera from your raspberry pi!

rpi-surveillance Make a surveillance camera from your Raspberry Pi 4! The surveillance is built as following: the camera records 10 seconds video and

Vladyslav 62 Feb 03, 2022
The official code of "SCROLLS: Standardized CompaRison Over Long Language Sequences".

SCROLLS This repository contains the official code of the paper: "SCROLLS: Standardized CompaRison Over Long Language Sequences". Links Official Websi

TAU NLP Group 39 Dec 23, 2022
EMNLP 2021 paper The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers.

Codebase for training transformers on systematic generalization datasets. The official repository for our EMNLP 2021 paper The Devil is in the Detail:

Csordás Róbert 57 Nov 21, 2022
Generate Cartoon Images using Generative Adversarial Network

AvatarGAN ✨ Generate Cartoon Images using DC-GAN Deep Convolutional GAN is a generative adversarial network architecture. It uses a couple of guidelin

Aakash Jhawar 50 Dec 29, 2022
Human motion synthesis using Unity3D

Human motion synthesis using Unity3D Prerequisite: Software: amc2bvh.exe, Unity 2017, Blender. Unity: RockVR (Video Capture), scenes, character models

Hao Xu 9 Jun 01, 2022
SmallInitEmb - LayerNorm(SmallInit(Embedding)) in a Transformer to improve convergence

SmallInitEmb LayerNorm(SmallInit(Embedding)) in a Transformer I find that when t

PENG Bo 11 Dec 25, 2022