RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

Related tags

Deep Learningru-dolph
Overview

[Paper] [Хабр] [Model Card] [Colab] [Kaggle]

RuDOLPH 🦌 🎄 ☃️

One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP


Russian Diffusion On Language Picture Hyper-modality (RuDOLPH) is a fast and light text-image-text transformer (350M GPT-3) designed for a quick and easy fine-tuning setup for the solution of various tasks: from generating images by text description and image classification to visual question answering and more. This model demonstrates the power of Hyper-modality Transformers.

(!!!) Hyper-modality means generalized multi-modal, e.g., model that consists of two multi-modal parts: text-2-image and image-2-text becomes text and image hyper-modality model

Sparse Attention Mask

row - col - row - [last] conv

Models

Installing

pip install rudolph==0.0.1rc8

Usage

Fine-Tuning example by @Alex Wortega Open In Colab

Init models

from rudalle import get_tokenizer, get_vae
from rudalle.utils import seed_everything
from rudalle.image_prompts import ImagePrompts

from rudolph.model import get_rudolph_model
from rudolph.pipelines import zs_clf, generate_codebooks, self_reranking_by_image, self_reranking_by_text, show, generate_captions, generate_texts
from rudolph import utils

device = 'cuda'
model = get_rudolph_model('350M', fp16=True, device=device)
model.to(device);
tokenizer = get_tokenizer()
vae = get_vae(dwt=False).to(device)

Setup for Fast Image Generation

text = 'старинный будильник многоугольной формы'
bs, images_num = 48, 48
top_k, top_p = 512, 0.9
with torch.no_grad():
    codebooks = generate_codebooks(text, tokenizer, model, top_k=top_k, images_num=images_num, top_p=top_p, bs=bs)
    ppl_text, ppl_image = self_reranking_by_text(text, codebooks, tokenizer, model, bs=bs)
    images = vae.decode(codebooks[ppl_text.argsort()[:9]])
images = torchvision.utils.make_grid(images, nrow=3)
img = torchvision.transforms.functional.to_pil_image(images)
img

Text Generation

generate_texts(
    tokenizer,
    model,
    template='красивый пейзаж ',
    top_k=32, top_p=0.8, texts_num=32, bs=32, seed=42
)[:8]

[{'text': 'красивый пейзаж и деревья в горах с синим небом и облаками в солнечный день. карпаты украина', 'ppl': 155.72},
 {'text': 'красивый пейзаж с горным озером и красивым пейзажем на восходе солнца', 'ppl': 195.81},
 {'text': 'красивый пейзаж с горными вершинами и чистым небом', 'ppl': 219.57},
 {'text': 'красивый пейзаж с горами в тумане, покрывающими горы', 'ppl': 221.36},
 {'text': 'красивый пейзаж и водопад в национальном парке пхутта в таиланде', 'ppl': 248.82},
 {'text': 'красивый пейзаж с голубым небом и белым облаком', 'ppl': 260.76},
 {'text': 'красивый пейзаж с рекой, горы и голубое небо', 'ppl': 273.1},
 {'text': 'красивый пейзаж с зелеными деревьями и голубым небом', 'ppl': 286.22}]

Image Generation + Self Reranking

text = 'красивый пейзаж с озером и лесом на заднем плане'
images_num, bs = 256, 32
seed_everything(42)
codebooks = []
for top_k, top_p, images_num in [
    (2048, 0.975, images_num),
    (1536, 0.975, images_num),
    (1024, 0.975, images_num),
]:
    codebooks.append(generate_codebooks(text, tokenizer, model, top_k=top_k, images_num=images_num, top_p=top_p, bs=bs))

codebooks = torch.cat(codebooks)

ppl_text, ppl_image = self_reranking_by_text(text, codebooks, tokenizer, model, bs=bs)
with torch.no_grad():
    images = vae.decode(codebooks[ppl_text.argsort()[:16]])

pil_images = utils.torch_tensors_to_pil_list(images)
show(pil_images, 8)

text = 'зимнее время года'

ppl_text, ppl_image = self_reranking_by_text(text, codebooks, tokenizer, model, bs=32)
with torch.no_grad():
    images = vae.decode(codebooks[ppl_text.argsort()[:16]])

pil_images = utils.torch_tensors_to_pil_list(images)
show(pil_images, 8)

text = 'ночное время суток'

ppl_text, ppl_image = self_reranking_by_text(text, codebooks, tokenizer, model, bs=32)
with torch.no_grad():
    images = vae.decode(codebooks[ppl_text.argsort()[:16]])

pil_images = utils.torch_tensors_to_pil_list(images)
show(pil_images, 8)

Image Prompt (like Inpainting)

text = 'лодка с алыми парусами'

images_num = 1024
bs = 32

borders = {'up': 6, 'left': 4, 'right': 6, 'down': 2}
image_prompts = ImagePrompts(pil_img, borders, vae, device, crop_first=True)

seed_everything(42)
codebooks = []
for top_k, top_p, images_num in [
    (1024, 0.99, images_num),
]:
    codebooks.append(
        generate_codebooks(text, tokenizer, model, top_k=top_k, images_num=images_num, top_p=top_p, bs=bs, image_prompts=image_prompts)
    )

codebooks = torch.cat(codebooks)

ppl_text, ppl_image = self_reranking_by_text(
    text,
    codebooks,
    tokenizer,
    model,
    bs=bs,
)
with torch.no_grad():
    images = vae.decode(codebooks[ppl_text.argsort()[:16]])

pil_images = utils.torch_tensors_to_pil_list(images)
show(pil_images, 8)

Diffusion (TODO, see Colab)

Image Captioning + Self Reranking

texts = generate_captions(pil_img, tokenizer, model, vae, template='на картинке ', top_k=16, captions_num=128, bs=32, top_p=0.6, temperature=0.8, seed=43, limit_eos=False)
ppl_text, ppl_image = self_reranking_by_image(texts, pil_img, tokenizer, model, vae, bs=32, seed=42)
for idx in ppl_image.argsort()[:8]:
    print(f'-{texts[idx]}')

-на картинке изображено - каяк с плавающей на нем женщиной
-на картинке - лодка с призраками
-на картинке корабль « », вид с воздуха
-на картинке лодка с парусом и 3d эффектом, вид с воздуха
-на картинке лодка с привидениями, вид сверху
-на картинке подводная лодка «акула», вид с воздуха
-на картинке изображено - надувная лодка с жестким дном
-на картинке с сайта esquire, изображен маленький красный корабль

-на картинке собака с длинными ушами, вид спереди
-на картинке собака с большими ушами и с длинными лапами, вид спереди
-на картинке собака с большими ушами и мордой собаки, вид спереди
-на картинке собака с белой гривой, вид спереди собака с коричневым цветом
-на картинке собака с большими ушами и собака с большими ушами, вид спереди
-на картинке собака с большими ушами и коричневым мехом, вид спереди
-на картинке собака с белой гривой, вид спереди собака с белой гривой
-на картинке собака с большими ушами и длинными ушами, вид спереди

-на картинке изображен жилой комплекс «арбат»
-на картинке видно здание с окнами в центре города
-на картинке изображен жилой дом с видом на улицу
-на картинке виднеется здание в центре города
-на картинке изображен вид на жилой комплекс, вид с улицы
-на картинке видна башня банка сбербанка
-на картинке изображен фасад здания с окнами в центре города
-на картинке виднеется здание с балконом

-на картинке мотоцикл иж юпитер вариант с мотором от иж юпитер, вид сзади
-на картинке мотоцикл с мотором и мотором с мотором от мотоцикла, вид сбоку
-на картинке изображен мотоцикл с кузовом из фильма «бэтмен против супермена», вид спереди
-на картинке велосипед с велосипедом в гараже, вид спереди
-на картинке мотоцикл с мотоциклом «мотоцикл» вид сзади, вид спереди
-на картинке велосипед с корзиной для покупок, вид сзади
-на картинке велосипед с мотором от мотоцикла иж юпитер вариант 2 варианта, вид сбоку
-на картинке мотоцикл с мотоциклом « », вид спереди

Zero-Shot Image Classification using PPL

import base64
import requests
from PIL import Image
from io import BytesIO

bs4_urls = requests.get('https://raw.githubusercontent.com/sberbank-ai/ru-dolph/master/pics/pipelines/cats_vs_dogs_bs4.json').json()

f, ax = plt.subplots(2,4, figsize=(12,6))

for i, bs4_url in enumerate(bs4_urls):
    pil_img = Image.open(BytesIO(base64.b64decode(bs4_url)))
    
    classes = ['кошка', 'собака']
    preds = zs_clf(
        pil_img, 
        classes,
        model, 
        tokenizer,
        vae,
        template = '{}', 
    )
    ax[i//4, i%4].imshow(pil_img)
    ax[i//4, i%4].set_title(preds['class'])

Linear Probe (TODO, see Colab)

Authors:

Drawing Drawing

Citation

@article{shonenkov2022ruDolph,
  title         = {RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP},
  author        = {Alex Shonenkov and Michael Konstantinov},
  year          = {2022},
  eprint        = {...},
  archivePrefix = {arXiv},
  primaryClass  = {cs.CL}
}
@misc{github2022ruDolph,
  title         = {RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP},
  author        = {Alex Shonenkov and Michael Konstantinov},
  year          = {2022},
  howpublished  = {\url{https://github.com/sberbank-ai/ru-dolph}},
}

Supported by

Owner
AI Forever
Creating ML for the future. AI projects you already know. We are non-profit organization with members from all over the world.
AI Forever
LLVIP: A Visible-infrared Paired Dataset for Low-light Vision

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision Project | Arxiv | Abstract It is very challenging for various visual tasks such as image

CVSM Group - email: <a href=[email protected]"> 377 Jan 07, 2023
Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL BASALT Challenge.

KAIROS MineRL BASALT Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL B

Vinicius G. Goecks 37 Oct 30, 2022
Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn?

Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn? Repository Structure: DSAN |└───amazon |    └── dataset (Amazo

DMIRLAB 17 Jan 04, 2023
Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir.

NetScanner.py Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir. Linux'da Kullanımı: git clone https://github.com/

4 Aug 23, 2021
3D-Reconstruction 基于深度学习方法的单目多视图三维重建

基于深度学习方法的单目多视图三维重建 Part I 三维重建 代码:Part1 技术文档:[Markdown] [PDF] 原始图像:Original Images 点云结果:Point Cloud Results-1

HMT_Curo 19 Dec 26, 2022
Official implementation for "Image Quality Assessment using Contrastive Learning"

Image Quality Assessment using Contrastive Learning Pavan C. Madhusudana, Neil Birkbeck, Yilin Wang, Balu Adsumilli and Alan C. Bovik This is the offi

Pavan Chennagiri 67 Dec 30, 2022
Prompt Tuning with Rules

PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art

THUNLP 118 Dec 30, 2022
SPEAR: Semi suPErvised dAta progRamming

Semi-Supervised Data Programming for Data Efficient Machine Learning SPEAR is a library for data programming with semi-supervision. The package implem

decile-team 91 Dec 06, 2022
🇰🇷 Text to Image in Korean

KoDALLE Utilizing pretrained language model’s token embedding layer and position embedding layer as DALLE’s text encoder. Background Training DALLE mo

HappyFace 74 Sep 22, 2022
A curated list of awesome neural radiance fields papers

Awesome Neural Radiance Fields A curated list of awesome neural radiance fields papers, inspired by awesome-computer-vision. How to submit a pull requ

Yen-Chen Lin 3.9k Dec 27, 2022
MTCNN face detection implementation for TensorFlow, as a PIP package.

MTCNN Implementation of the MTCNN face detector for Keras in Python3.4+. It is written from scratch, using as a reference the implementation of MTCNN

Iván de Paz Centeno 1.9k Dec 30, 2022
salabim - discrete event simulation in Python

Object oriented discrete event simulation and animation in Python. Includes process control features, resources, queues, monitors. statistical distrib

181 Dec 21, 2022
RoadMap and preparation material for Machine Learning and Data Science - From beginner to expert.

ML-and-DataScience-preparation This repository has the goal to create a learning and preparation roadMap for Machine Learning Engineers and Data Scien

33 Dec 29, 2022
Code in PyTorch for the convex combination linear IAF and the Householder Flow, J.M. Tomczak & M. Welling

VAE with Volume-Preserving Flows This is a PyTorch implementation of two volume-preserving flows as described in the following papers: Tomczak, J. M.,

Jakub Tomczak 87 Dec 26, 2022
ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runti

Microsoft 58 Dec 18, 2022
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

UCL Bioinformatics Group 44 Dec 10, 2022
PyTorch Implementation of DSB for Score Based Generative Modeling. Experiments managed using Hydra.

Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling This repository contains the implementation for the paper Diffusion

James Thornton 50 Jan 03, 2023
A simple software for capturing human body movements using the Kinect camera.

KinectMotionCapture A simple software for capturing human body movements using the Kinect camera. The software can seamlessly save joints and bones po

Aleksander Palkowski 5 Aug 13, 2022
ICCV2021 - A New Journey from SDRTV to HDRTV.

ICCV2021 - A New Journey from SDRTV to HDRTV.

XyChen 82 Dec 27, 2022
Reference models and tools for Cloud TPUs.

Cloud TPUs This repository is a collection of reference models and tools used with Cloud TPUs. The fastest way to get started training a model on a Cl

5k Jan 05, 2023