๐Ÿ‡ฐ๐Ÿ‡ท Text to Image in Korean

Overview

KoDALLE

Open In Colab Wandb Log

image-20211227151557604

Utilizing pretrained language modelโ€™s token embedding layer and position embedding layer as DALLEโ€™s text encoder.

Background

  • Training DALLE model from scratch demands large size paired dataset of images and captions. For example, OpenAI DALLE is trained with more than 250 million text-image pairs for the training.
  • If the dataset isnโ€™t large enough or is limited to specific domains, number of vocabularies in the trained DALLE model are insufficient. For instance, 1 million text captions of K-Fashion dataset only consists of more or less than 300 tokens.
  • Therefore, inferencing from such DALLE models could be problematic if the given sentence query is unconnected to the originally trained captionsโ€™ text dataset.

KoDALLE's Result on Small Size Fashion Dataset

OpenAIโ€™s DALLE KoDALLE of HappyFace
Train Dataset Size 250 Million Pairs 0.8 Million Pairs
#Params 12 Billion 428 Million
#Layers 64 Layers 16 Layers
Computing Resource 1024 x V100 16GB 1 x V100 32GB
Text Encoder 16384 Vocab x 512 Dim BPE 32000 Vocab x 1024 Dim klue/roberta-large
Image Encoder VQVAE VQGAN
Optimizer AdamW AdamW
Learning Rate 4.5e-5 3.0e-5
Weight Decay 4.5e-3 3.0e-3
LR Scheduler ReduceLROnPlateau -

The team constructed Text to Fashion Design DALLE model in Korean language with less than 100k text-image sampled pairs.

Caption ํ•˜์˜์—์„œ ์ƒ‰์ƒ์€ ์Šค์นด์ด๋ธ”๋ฃจ์ด๋‹ค. ์ƒ์˜์—์„œ ๊ธฐ์žฅ์€ ๋กฑ์ด๋‹ค. ์ƒ‰์ƒ์€ ํ™”์ดํŠธ์ด๋‹ค. ์นดํ…Œ๊ณ ๋ฆฌ๋Š” ๋ธ”๋ผ์šฐ์Šค์ด๋‹ค. ๋””ํ…Œ์ผ์—๋Š” ์…”๋ง์ด๋‹ค. ์†Œ๋งค๊ธฐ์žฅ์€ ๋ฐ˜ํŒ”์ด๋‹ค. ์†Œ์žฌ์—๋Š” ์‹คํฌ์ด๋‹ค. ํ”„๋ฆฐํŠธ์—๋Š” ๋ฌด์ง€์ด๋‹ค. ๋„ฅ๋ผ์ธ์€ ๋ธŒ์ด๋„ฅ์ด๋‹ค. ํ•์€ ๋…ธ๋ฉ€
Generated Image image
Caption ์•„์šฐํ„ฐ๋Š” ์ƒ‰์ƒ์ด ์นดํ‚ค ์†Œ์žฌ๊ฐ€ ์šฐ๋ธ ํ•์ด ๋ฃจ์ฆˆ์ธ ์ฝ”ํŠธ์ด๋‹ค. ํ•˜์˜๋Š” ์ƒ‰์ƒ์ด ๋„ค์ด๋น„ ์†Œ์žฌ๊ฐ€ ๋ฐ๋‹˜ ํ•์ด ์Šคํ‚ค๋‹ˆ์ธ ์ฒญ๋ฐ”์ง€์ด๋‹ค.
Generated Image image
Caption ํ•˜์˜์—์„œ ๊ธฐ์žฅ์€ ๋ฐœ๋ชฉ์ด๋‹ค. ์ƒ‰์ƒ์€ ๋ธ”๋ฃจ์ด๋‹ค. ์นดํ…Œ๊ณ ๋ฆฌ๋Š” ์Šค์ปคํŠธ์ด๋‹ค. ์†Œ์žฌ์—๋Š” ๋ฐ๋‹˜์ด๋‹ค. ํ•์€ ์™€์ด๋“œ์ด๋‹ค. ์ƒ์˜์—์„œ ์ƒ‰์ƒ์€ ํ™”์ดํŠธ์ด๋‹ค. ์นดํ…Œ๊ณ ๋ฆฌ๋Š” ๋ธ”๋ผ์šฐ์Šค์ด๋‹ค. ๋””ํ…Œ์ผ์—๋Š” ์…”๋ง์ด๋‹ค. ์†Œ๋งค๊ธฐ์žฅ์€ ๋ฐ˜ํŒ”์ด๋‹ค. ์†Œ์žฌ์—๋Š” ์šฐ๋ธ์ด๋‹ค.
Generated Image image
Caption ์ƒ์˜์—์„œ ๊ธฐ์žฅ์€ ๋…ธ๋ฉ€์ด๋‹ค. ์ƒ์˜์—์„œ ์ƒ‰์ƒ์€ ํ™”์ดํŠธ์ด๋‹ค. ์ƒ์˜์—์„œ ์„œ๋ธŒ์ƒ‰์ƒ์€ ๋ธ”๋ž™์ด๋‹ค. ์ƒ์˜์—์„œ ์นดํ…Œ๊ณ ๋ฆฌ๋Š” ํ‹ฐ์…”์ธ ์ด๋‹ค. ์ƒ์˜์—์„œ ์†Œ๋งค๊ธฐ์žฅ์€ ๋ฐ˜ํŒ”์ด๋‹ค. ์ƒ์˜์—์„œ ์†Œ์žฌ์—๋Š” ์ €์ง€์ด๋‹ค. ์ƒ์˜์—์„œ ํ”„๋ฆฐํŠธ์—๋Š” ๋ ˆํ„ฐ๋ง์ด๋‹ค. ์ƒ์˜์—์„œ ๋„ฅ๋ผ์ธ์€ ๋ผ์šด๋“œ๋„ฅ์ด๋‹ค. ์ƒ์˜์—์„œ ํ•์€ ๋ฃจ์ฆˆ์ด๋‹ค.
Generated Image image

Methodology

Experimentations were conducted with the following Korean Transformers Modelsโ€™ embedding layers. The team selected klue/roberta-large as baseline in the repository considering the size of the model.

KoDALLE with klue/roberta-large's wpe and wte which is trainable on 16GB GPU Google Colab environment. Hyperparams related to the DALLE's model size are following.

'BATCH_SIZE': 32
'DEPTH': 2
'TEXT_SEQ_LEN': 128
'VOCAB_SIZE': 32000
'MODEL_DIM': 1024
'ATTN_TYPES': 'full'
'DIM_HEAD': 64
'HEADS': 8

Significance

  • Offers promising result for training from scratch on specific domains with small size dataset.
  • Introduces solution for domain specific DALLE & CLIP models to be robust on input sentence.
  • Recommends adequate text-to-image model size for given computation resource.
  • Suggests effortless method of creating DALLE & CLIP model for own languages if pretrained language model is available.

WIP

  • Add image-caption reranker(EfficientNet + Klue/roberta-large)
  • Model trained with 500k text-image pairs.
  • Modulize in python code.
  • Update Inference code.
  • Update FID and IS metrics on test and validation dataset.
You might also like...
[CVPR 2021] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach
[CVPR 2021] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach

Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach This is the repo to host the dataset TextSeg and code for TexRNe

BARTScore: Evaluating Generated Text as Text Generation
BARTScore: Evaluating Generated Text as Text Generation

This is the Repo for the paper: BARTScore: Evaluating Generated Text as Text Generation Updates 2021.06.28 Release online evaluation Demo 2021.06.25 R

Code for EMNLP 2021 main conference paper
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Text-AutoAugment (TAA) This repository contains the code for our paper Text AutoAugment: Learning Compositional Augmentation Policy for Text Classific

a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LSTM layers

RNN-Playwrite a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LS

Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts

t5-japanese Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts. The following is a list of models that

Siamese-nn-semantic-text-similarity - A repository containing comprehensive Neural Networks based PyTorch implementations for the semantic text similarity task Automatic number plate recognition using tech:  Yolo, OCR, Scene text detection, scene text recognation, flask, torch
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Simple command line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network)
Simple command line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network)

Deep Daze mist over green hills shattered plates on the grass cosmic love and attention a time traveler in the crowd life during the plague meditative

Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

DALL-E in Pytorch Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch. It will also contain CLIP for ranking the ge

Comments
  • Koclip apply in KoDALLE

    Koclip apply in KoDALLE

    ๋ณ€๊ฒฝ์‚ฌํ•ญ

    add) model.py

    ํ˜„์ˆ˜๋‹˜์˜ KoCLIP์ด DALLE Roberta ์—์„œ ์ž‘๋™ํ•˜๊ฒŒ๋” ์ฝ”๋“œ๋ฅผ ์ˆ˜์ •ํ•œ ํŒŒ์ผ์ž…๋‹ˆ๋‹ค.

    dev branch์— ์กด์žฌํ•˜๋Š” model.py ๋น„๊ตํ•˜๋ฉด์„œ ์ˆ˜์ •์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.

    add) generate.ipynb

    KoCLIP์ด ์ž‘๋™ํ•˜๋Š”๊ฒƒ์„ ๋ณผ ์ˆ˜ ์žˆ๋„๋ก ๋งŒ๋“  ์ฝ”๋“œ์ž…๋‹ˆ๋‹ค.

    opened by JoonHong-Kim 1
  • add: KoCLIP codes

    add: KoCLIP codes

    ๋ณ€๊ฒฝ์‚ฌํ•ญ:

    refactor) clipmodel.py

    • CLIPModel ์ตœ์ข… ๋ฒ„์ „์œผ๋กœ ์ˆ˜์ •
    • clip folder๋กœ ์ด๋™

    add) clip/train_clip.py

    • CLIP ๋ชจ๋ธ ํ•™์Šต์— ์‚ฌ์šฉํ•œ ์ฝ”๋“œ์ž…๋‹ˆ๋‹ค

    add) clip/dataloader.py

    • CLIP ๋ชจ๋ธ ํ•™์Šต์— ์‚ฌ์šฉํ•œ dataloader ํ•จ์ˆ˜์ž…๋‹ˆ๋‹ค.
    opened by shawnhyeonsoo 0
  • add skip_sample in TextImageDataset

    add skip_sample in TextImageDataset

    ๋ณ€๊ฒฝ์‚ฌํ•ญ

    modify) loader.py

    • TextImageDataset์—์„œ texts, image๋ฅผ ๋ถˆ๋Ÿฌ์˜ฌ ๋•Œ, data๊ฐ€ ์—†์„ ๊ฒฝ์šฐ ๋ฐœ์ƒํ•˜๋Š” ์—๋Ÿฌ ์ฒ˜๋ฆฌ
    • skip_sample ํ•จ์ˆ˜๋ฅผ ํ™œ์šฉํ•˜์—ฌ error๊ฐ€ ๋ฐœ์ƒํ•  ๊ฒฝ์šฐ, random ํ˜น์€ ๋‹ค์Œ index๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ skip
    • ๊ธฐ์กด train_dalle_gpt_roberta.py๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ˆ˜์ •
    opened by jjonhwa 0
Releases(v0.1.0-beta)
Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Packt 1.5k Jan 03, 2023
Simple, efficient and flexible vision toolbox for mxnet framework.

MXbox: Simple, efficient and flexible vision toolbox for mxnet framework. MXbox is a toolbox aiming to provide a general and simple interface for visi

Ligeng Zhu 31 Oct 19, 2019
Software Platform for solving and manipulating multiparametric programs in Python

PPOPT Python Parametric OPtimization Toolbox (PPOPT) is a software platform for solving and manipulating multiparametric programs in Python. This pack

10 Sep 13, 2022
Res2Net for Instance segmentation and Object detection using MaskRCNN

Res2Net for Instance segmentation and Object detection using MaskRCNN Since the MaskRCNN-benchmark of facebook is deprecated, we suggest to use our mm

Res2Net Applications 55 Oct 30, 2022
Deep learning for Engineers - Physics Informed Deep Learning

SciANN: Neural Networks for Scientific Computations SciANN is a Keras wrapper for scientific computations and physics-informed deep learning. New to S

SciANN 195 Jan 03, 2023
Trading environnement for RL agents, backtesting and training.

TradzQAI Trading environnement for RL agents, backtesting and training. Live session with coinbasepro-python is finaly arrived ! Available sessions: L

Tony Denion 164 Oct 30, 2022
Simple SN-GAN to generate CryptoPunks

CryptoPunks GAN Simple SN-GAN to generate CryptoPunks. Neural network architecture and training code has been modified from the PyTorch DCGAN example.

Teddy Koker 66 Dec 15, 2022
Tensorflow implementation for Self-supervised Graph Learning for Recommendation

If the compilation is successful, the evaluator of cpp implementation will be called automatically. Otherwise, the evaluator of python implementation will be called.

152 Jan 07, 2023
Pun Detection and Location

Pun Detection and Location โ€œThe Boating Store Had Its Best Sail Everโ€: Pronunciation-attentive Contextualized Pun Recognition Yichao Zhou, Jyun-yu Jia

lawson 3 May 13, 2022
Sequence Modeling with Structured State Spaces

Structured State Spaces for Sequence Modeling This repository provides implementations and experiments for the following papers. S4 Efficiently Modeli

HazyResearch 896 Jan 01, 2023
StellarGraph - Machine Learning on Graphs

StellarGraph Machine Learning Library StellarGraph is a Python library for machine learning on graphs and networks. Table of Contents Introduction Get

S T E L L A R 2.6k Jan 05, 2023
Deep Learning for 3D Point Clouds: A Survey (IEEE TPAMI, 2020)

๐Ÿ”ฅDeep Learning for 3D Point Clouds (IEEE TPAMI, 2020)

Qingyong 1.4k Jan 08, 2023
A PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-Supervised Learning Framework".

Mugs: A Multi-Granular Self-Supervised Learning Framework This is a PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-

Sea AI Lab 62 Nov 08, 2022
ๆœบๅ™จๅญฆไน ใ€ๆทฑๅบฆๅญฆไน ใ€่‡ช็„ถ่ฏญ่จ€ๅค„็†็ญ‰ไบบๅทฅๆ™บ่ƒฝๅŸบ็ก€็Ÿฅ่ฏ†ๆ€ป็ป“ใ€‚

่ฏดๆ˜Ž ๆœบๅ™จๅญฆไน ใ€ๆทฑๅบฆๅญฆไน ใ€่‡ช็„ถ่ฏญ่จ€ๅค„็†ๅŸบ็ก€็Ÿฅ่ฏ†ๆ€ป็ป“ใ€‚ ็›ฎๅ‰ไธป่ฆๅ‚่€ƒๆŽ่ˆช่€ๅธˆ็š„ใ€Š็ปŸ่ฎกๅญฆไน ๆ–นๆณ•ใ€‹ไธ€ไนฆ๏ผŒไนŸๆœ‰ไธ€ไบ›ๅ†…ๅฎนไพ‹ๅฆ‚XGBoostใ€่š็ฑปใ€ๆทฑๅบฆๅญฆไน ็›ธๅ…ณๅ†…ๅฎนใ€NLP็›ธๅ…ณๅ†…ๅฎน็ญ‰ๆ˜ฏไนฆไธญๆœชๆๅŠ็š„ใ€‚

Peter 445 Dec 12, 2022
PyTorch implementation of DeepLab v2 on COCO-Stuff / PASCAL VOC

DeepLab with PyTorch This is an unofficial PyTorch implementation of DeepLab v2 [1] with a ResNet-101 backbone. COCO-Stuff dataset [2] and PASCAL VOC

Kazuto Nakashima 995 Jan 08, 2023
RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems

RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems This is our implementation for the paper: Weibo Gao, Qi Liu*, Zhenya Hu

BigData Lab @USTC ไธญ็ง‘ๅคงๅคงๆ•ฐๆฎๅฎž้ชŒๅฎค 10 Oct 16, 2022
State-to-Distribution (STD) Model

State-to-Distribution (STD) Model In this repository we provide exemplary code on how to construct and evaluate a state-to-distribution (STD) model fo

<a href=[email protected]"> 2 Apr 07, 2022
[CVPR 2022] Official PyTorch Implementation for "Reference-based Video Super-Resolution Using Multi-Camera Video Triplets"

Reference-based Video Super-Resolution (RefVSR) Official PyTorch Implementation of the CVPR 2022 Paper Project | arXiv | RealMCVSR Dataset This repo c

Junyong Lee 151 Dec 30, 2022
Facebook Research 605 Jan 02, 2023
CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images

CFC-Net This project hosts the official implementation for the paper: CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Dete

ming71 55 Dec 12, 2022