tflite2tensorflow
Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite.
1. Supported Layers
| No. | TFLite Layer | TF Layer | Remarks |
|---|---|---|---|
| 1 | CONV_2D | tf.nn.conv2d | |
| 2 | DEPTHWISE_CONV_2D | tf.nn.depthwise_conv2d | |
| 3 | MAX_POOL_2D | tf.nn.max_pool | |
| 4 | PAD | tf.pad | |
| 5 | MIRROR_PAD | tf.raw_ops.MirrorPad | |
| 6 | RELU | tf.nn.relu | |
| 7 | PRELU | tf.keras.layers.PReLU | |
| 8 | RELU6 | tf.nn.relu6 | |
| 9 | RESHAPE | tf.reshape | |
| 10 | ADD | tf.add | |
| 11 | SUB | tf.math.subtract | |
| 12 | CONCATENATION | tf.concat | |
| 13 | LOGISTIC | tf.math.sigmoid | |
| 14 | TRANSPOSE_CONV | tf.nn.conv2d_transpose | |
| 15 | MUL | tf.multiply | |
| 16 | HARD_SWISH | x*tf.nn.relu6(x+3)*0.16666667 Or x*tf.nn.relu6(x+3)*0.16666666 | |
| 17 | AVERAGE_POOL_2D | tf.keras.layers.AveragePooling2D | |
| 18 | FULLY_CONNECTED | tf.keras.layers.Dense | |
| 19 | RESIZE_BILINEAR | tf.image.resize Or tf.image.resize_bilinear | |
| 20 | RESIZE_NEAREST_NEIGHBOR | tf.image.resize Or tf.image.resize_nearest_neighbor | |
| 21 | MEAN | tf.math.reduce_mean | |
| 22 | SQUARED_DIFFERENCE | tf.math.squared_difference | |
| 23 | RSQRT | tf.math.rsqrt | |
| 24 | DEQUANTIZE | (const) | |
| 25 | FLOOR | tf.math.floor | |
| 26 | TANH | tf.math.tanh | |
| 27 | DIV | tf.math.divide | |
| 28 | FLOOR_DIV | tf.math.floordiv | |
| 29 | SUM | tf.math.reduce_sum | |
| 30 | POW | tf.math.pow | |
| 31 | SPLIT | tf.split | |
| 32 | SOFTMAX | tf.nn.softmax | |
| 33 | STRIDED_SLICE | tf.strided_slice | |
| 34 | TRANSPOSE | ttf.transpose | |
| 35 | SPACE_TO_DEPTH | tf.nn.space_to_depth | |
| 36 | DEPTH_TO_SPACE | tf.nn.depth_to_space | |
| 37 | REDUCE_MAX | tf.math.reduce_max | |
| 38 | Convolution2DTransposeBias | tf.nn.conv2d_transpose, tf.math.add | CUSTOM, MediaPipe |
| 39 | LEAKY_RELU | tf.keras.layers.LeakyReLU | |
| 40 | MAXIMUM | tf.math.maximum | |
| 41 | MINIMUM | tf.math.minimum | |
| 42 | MaxPoolingWithArgmax2D | tf.raw_ops.MaxPoolWithArgmax | CUSTOM, MediaPipe |
| 43 | MaxUnpooling2D | tf.cast, tf.shape, tf.math.floordiv, tf.math.floormod, tf.ones_like, tf.shape, tf.concat, tf.reshape, tf.transpose, tf.scatter_nd | CUSTOM, MediaPipe |
| 44 | GATHER | tf.gather | |
| 45 | CAST | tf.cast | |
| 46 | SLICE | tf.slice | |
| 47 | PACK | tf.stack | |
| 48 | UNPACK | tf.unstack | |
| 49 | ARG_MAX | tf.math.argmax | |
| 50 | EXP | tf.exp | |
| 51 | TOPK_V2 | tf.math.top_k | |
| 52 | LOG_SOFTMAX | tf.nn.log_softmax | |
| 53 | L2_NORMALIZATION | tf.math.l2_normalize | |
| 54 | LESS | tf.math.less | |
| 55 | LESS_EQUAL | tf.math.less_equal | |
| 56 | GREATER | tf.math.greater | |
| 57 | GREATER_EQUAL | tf.math.greater_equal | |
| 58 | NEG | tf.math.negative | |
| 59 | WHERE | tf.where | |
| 60 | SELECT | tf.where | |
| 61 | SELECT_V2 | tf.where | |
| 62 | PADV2 | tf.raw_ops.PadV2 | |
| 63 | SIN | tf.math.sin | |
| 64 | TILE | tf.tile | |
| 65 | EQUAL | tf.math.equal | |
| 66 | NOT_EQUAL | tf.math.not_equal | |
| 67 | LOG | tf.math.log | |
| 68 | SQRT | tf.math.sqrt | |
| 69 | ARG_MIN | tf.math.argmin | |
| 70 | REDUCE_PROD | tf.math.reduce_prod | |
| 71 | LOGICAL_OR | tf.math.logical_or | |
| 72 | LOGICAL_AND | tf.math.logical_and | |
| 73 | LOGICAL_NOT | tf.math.logical_not | |
| 74 | REDUCE_MIN | tf.math.reduce_min | |
| 75 | REDUCE_ANY | tf.math.reduce_any | |
| 76 | SQUARE | tf.math.square | |
| 77 | ZEROS_LIKE | tf.zeros_like | |
| 78 | FILL | tf.fill | |
| 79 | FLOOR_MOD | tf.math.floormod | |
| 80 | RANGE | tf.range | |
| 81 | ABS | tf.math.abs | |
| 82 | UNIQUE | tf.unique | |
| 83 | CEIL | tf.math.ceil | |
| 84 | REVERSE_V2 | tf.reverse | |
| 85 | ADD_N | tf.math.add_n | |
| 86 | GATHER_ND | tf.gather_nd | |
| 87 | COS | tf.math.cos | |
| 88 | RANK | tf.math.rank | |
| 89 | ELU | tf.nn.elu | |
| 90 | WHILE | tf.while_loop | |
| 91 | REVERSE_SEQUENCE | tf.reverse_sequence | |
| 92 | MATRIX_DIAG | tf.linalg.diag | |
| 93 | ROUND | tf.math.round | |
| 94 | NON_MAX_SUPPRESSION_V4 | tf.raw_ops.NonMaxSuppressionV4 | |
| 95 | NON_MAX_SUPPRESSION_V5 | tf.raw_ops.NonMaxSuppressionV5 | |
| 96 | SCATTER_ND | tf.scatter_nd | |
| 97 | SEGMENT_SUM | tf.math.segment_sum | |
| 98 | CUMSUM | tf.math.cumsum | |
| 99 | BROADCAST_TO | tf.broadcast_to | |
| 100 | RFFT2D | tf.signal.rfft2d | |
| 101 | L2_POOL_2D | tf.square, tf.keras.layers.AveragePooling2D, tf.sqrt | |
| 102 | LOCAL_RESPONSE_NORMALIZATION | tf.nn.local_response_normalization | |
| 103 | RELU_N1_TO_1 | tf.minimum, tf.maximum | |
| 104 | SPLIT_V | tf.raw_ops.SplitV | |
| 105 | MATRIX_SET_DIAG | tf.linalg.set_diag | |
| 106 | SHAPE | tf.shape |
2. Environment
- Python3.6+
- TensorFlow v2.4.0+ or tf-nightly
- TensorFlow Lite v2.4.1 with MediaPipe Custom OP, FlexDelegate and XNNPACK enabled
- Add a custom OP to the TFLite runtime to build the whl installer (for Python),
MaxPoolingWithArgmax2D,MaxUnpooling2D,Convolution2DTransposeBias
- Add a custom OP to the TFLite runtime to build the whl installer (for Python),
- flatc v1.12.0
3. Setup
To install using the Python Package Index (PyPI), use the following command.
$ pip3 install tflite2tensorflow --upgrade
Or, To install with the latest source code of the main branch, use the following command.
$ pip3 install git+https://github.com/PINTO0309/tflite2tensorflow --upgrade
Installs a customized TensorFlow Lite runtime with support for MediaPipe Custom OP, FlexDelegate, and XNNPACK. If tflite_runtime does not install properly, please follow the instructions in the next article to build a custom build in the environment you are using. Add a custom OP to the TFLite runtime to build the whl installer (for Python), MaxPoolingWithArgmax2D, MaxUnpooling2D, Convolution2DTransposeBias
$ sudo pip3 uninstall tensorboard-plugin-wit tb-nightly tensorboard \
tf-estimator-nightly tensorflow-gpu \
tensorflow tf-nightly tensorflow_estimator tflite_runtime -y
### Customized version of TensorFlow Lite installation
$ sudo gdown --id 1RWZmfFgtxm3muunv6BSf4yU29SKKFXIh
$ sudo chmod +x tflite_runtime-2.4.1-py3-none-any.whl
$ sudo pip3 install tflite_runtime-2.4.1-py3-none-any.whl
### Install the full TensorFlow package
$ sudo pip3 install tensorflow==2.4.1
or
$ sudo pip3 install tf-nightly
### Download flatc
$ flatbuffers/1.12.0/download.sh
### Download schema.fbs
$ wget https://github.com/PINTO0309/tflite2tensorflow/raw/main/schema/schema.fbs
If the downloaded flatc does not work properly, please build it in your environment.
$ git clone -b v1.12.0 https://github.com/google/flatbuffers.git
$ cd flatbuffers && mkdir build && cd build
$ cmake -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Release ..
$ make -j$(nproc)
The Windows version of flatc v1.12.0 can be downloaded from here. https://github.com/google/flatbuffers/releases/download/v1.12.0/flatc_windows.zip
4. Usage / Execution sample
4-1. Command line options
usage: tflite2tensorflow [-h] --model_path MODEL_PATH --flatc_path
FLATC_PATH --schema_path SCHEMA_PATH
[--model_output_path MODEL_OUTPUT_PATH]
[--output_pb OUTPUT_PB]
[--output_no_quant_float32_tflite OUTPUT_NO_QUANT_FLOAT32_TFLITE]
[--output_weight_quant_tflite OUTPUT_WEIGHT_QUANT_TFLITE]
[--output_float16_quant_tflite OUTPUT_FLOAT16_QUANT_TFLITE]
[--output_integer_quant_tflite OUTPUT_INTEGER_QUANT_TFLITE]
[--output_full_integer_quant_tflite OUTPUT_FULL_INTEGER_QUANT_TFLITE]
[--output_integer_quant_type OUTPUT_INTEGER_QUANT_TYPE]
[--string_formulas_for_normalization STRING_FORMULAS_FOR_NORMALIZATION]
[--calib_ds_type CALIB_DS_TYPE]
[--ds_name_for_tfds_for_calibration DS_NAME_FOR_TFDS_FOR_CALIBRATION]
[--split_name_for_tfds_for_calibration SPLIT_NAME_FOR_TFDS_FOR_CALIBRATION]
[--download_dest_folder_path_for_the_calib_tfds DOWNLOAD_DEST_FOLDER_PATH_FOR_THE_CALIB_TFDS]
[--tfds_download_flg TFDS_DOWNLOAD_FLG]
[--output_tfjs OUTPUT_TFJS]
[--output_tftrt OUTPUT_TFTRT]
[--output_coreml OUTPUT_COREML]
[--output_edgetpu OUTPUT_EDGETPU]
[--replace_swish_and_hardswish REPLACE_SWISH_AND_HARDSWISH]
[--optimizing_hardswish_for_edgetpu OPTIMIZING_HARDSWISH_FOR_EDGETPU]
[--replace_prelu_and_minmax REPLACE_PRELU_AND_MINMAX]
optional arguments:
-h, --help show this help message and exit
--model_path MODEL_PATH
input tflite model path (*.tflite)
--flatc_path FLATC_PATH
flatc file path (flatc)
--schema_path SCHEMA_PATH
schema.fbs path (schema.fbs)
--model_output_path MODEL_OUTPUT_PATH
The output folder path of the converted model file
--output_pb OUTPUT_PB
.pb output switch
--output_no_quant_float32_tflite OUTPUT_NO_QUANT_FLOAT32_TFLITE
float32 tflite output switch
--output_weight_quant_tflite OUTPUT_WEIGHT_QUANT_TFLITE
weight quant tflite output switch
--output_float16_quant_tflite OUTPUT_FLOAT16_QUANT_TFLITE
float16 quant tflite output switch
--output_integer_quant_tflite OUTPUT_INTEGER_QUANT_TFLITE
integer quant tflite output switch
--output_full_integer_quant_tflite OUTPUT_FULL_INTEGER_QUANT_TFLITE
full integer quant tflite output switch
--output_integer_quant_type OUTPUT_INTEGER_QUANT_TYPE
Input and output types when doing Integer Quantization
('int8 (default)' or 'uint8')
--string_formulas_for_normalization STRING_FORMULAS_FOR_NORMALIZATION
String formulas for normalization. It is evaluated by
Python's eval() function. Default: '(data -
[127.5,127.5,127.5]) / [127.5,127.5,127.5]'
--calib_ds_type CALIB_DS_TYPE
Types of data sets for calibration. tfds or
numpy(Future Implementation)
--ds_name_for_tfds_for_calibration DS_NAME_FOR_TFDS_FOR_CALIBRATION
Dataset name for TensorFlow Datasets for calibration.
https://www.tensorflow.org/datasets/catalog/overview
--split_name_for_tfds_for_calibration SPLIT_NAME_FOR_TFDS_FOR_CALIBRATION
Split name for TensorFlow Datasets for calibration.
https://www.tensorflow.org/datasets/catalog/overview
--download_dest_folder_path_for_the_calib_tfds DOWNLOAD_DEST_FOLDER_PATH_FOR_THE_CALIB_TFDS
Download destination folder path for the calibration
dataset. Default: $HOME/TFDS
--tfds_download_flg TFDS_DOWNLOAD_FLG
True to automatically download datasets from
TensorFlow Datasets. True or False
--output_tfjs OUTPUT_TFJS
tfjs model output switch
--output_tftrt OUTPUT_TFTRT
tftrt model output switch
--output_coreml OUTPUT_COREML
coreml model output switch
--output_edgetpu OUTPUT_EDGETPU
edgetpu model output switch
--replace_swish_and_hardswish REPLACE_SWISH_AND_HARDSWISH
[Future support] Replace swish and hard-swish with
each other
--optimizing_hardswish_for_edgetpu OPTIMIZING_HARDSWISH_FOR_EDGETPU
Optimizing hardswish for edgetpu
--replace_prelu_and_minmax REPLACE_PRELU_AND_MINMAX
Replace prelu and minimum/maximum with each other
4-2. Step 1 : Generating saved_model and FreezeGraph (.pb)
$ tflite2tensorflow \
--model_path segm_full_v679.tflite \
--flatc_path ./flatc \
--schema_path schema.fbs \
--output_pb True
or
$ tflite2tensorflow \
--model_path segm_full_v679.tflite \
--flatc_path ./flatc \
--schema_path schema.fbs \
--output_pb True \
--optimizing_hardswish_for_edgetpu True
4-3. Step 2 : Generation of quantized tflite, TFJS, TF-TRT, EdgeTPU, and CoreML
$ tflite2tensorflow \
--model_path segm_full_v679.tflite \
--flatc_path ./flatc \
--schema_path schema.fbs \
--output_no_quant_float32_tflite True \
--output_weight_quant_tflite True \
--output_float16_quant_tflite True \
--output_integer_quant_tflite True \
--string_formulas_for_normalization 'data / 255.0' \
--output_tfjs True \
--output_coreml True \
--output_tftrt True
or
$ tflite2tensorflow \
--model_path segm_full_v679.tflite \
--flatc_path ./flatc \
--schema_path schema.fbs \
--output_no_quant_float32_tflite True \
--output_weight_quant_tflite True \
--output_float16_quant_tflite True \
--output_integer_quant_tflite True \
--output_edgetpu True \
--string_formulas_for_normalization 'data / 255.0' \
--output_tfjs True \
--output_coreml True \
--output_tftrt True
5. Sample image
This is the result of converting MediaPipe's Meet Segmentation model (segm_full_v679.tflite / Float16 / Google Meet) to saved_model and then reconverting it to Float32 tflite. Replace the GPU-optimized Convolution2DTransposeBias layer with the standard TransposeConv and BiasAdd layers in a fully automatic manner. The weights and biases of the Float16 Dequantize layer are automatically back-quantized to Float32 precision. The generated saved_model in Float32 precision can be easily converted to Float16, INT8, EdgeTPU, TFJS, TF-TRT, CoreML, ONNX, and OpenVINO.
| Before | After |
|---|---|
![]() |
![]() |





And below is the output of the same heavy model running on the MYRIADX :
We can see the skeleton is kind of distorded. Actually, in many cases, with other images, we don't even have a skeleton drawn because the score given by the model is too low.





