SNIPS: Solving Noisy Inverse Problems Stochastically

Overview

SNIPS: Solving Noisy Inverse Problems Stochastically

This repo contains the official implementation for the paper SNIPS: Solving Noisy Inverse Problems Stochastically.

by Bahjat Kawar, Gregory Vaksman, and Michael Elad, Computer Science Department, Technion.

Running Experiments

Dependencies

Run the following conda line to install all necessary python packages for our code and set up the snips environment.

conda env create -f environment.yml

The environment includes cudatoolkit=11.0. You may change that depending on your hardware.

Project structure

main.py is the file that you should run for both training and sampling. Execute python main.py --help to get its usage description:

usage: main.py [-h] --config CONFIG [--seed SEED] [--exp EXP] --doc DOC
               [--comment COMMENT] [--verbose VERBOSE] [-i IMAGE_FOLDER]
               [-n NUM_VARIATIONS] [-s SIGMA_0] [--degradation DEGRADATION]

optional arguments:
  -h, --help            show this help message and exit
  --config CONFIG       Path to the config file
  --seed SEED           Random seed
  --exp EXP             Path for saving running related data.
  --doc DOC             A string for documentation purpose. Will be the name
                        of the log folder.
  --comment COMMENT     A string for experiment comment
  --verbose VERBOSE     Verbose level: info | debug | warning | critical
  -i IMAGE_FOLDER, --image_folder IMAGE_FOLDER
                        The folder name of samples
  -n NUM_VARIATIONS, --num_variations NUM_VARIATIONS
                        Number of variations to produce
  -s SIGMA_0, --sigma_0 SIGMA_0
                        Noise std to add to observation
  --degradation DEGRADATION
                        Degradation: inp | deblur_uni | deblur_gauss | sr2 |
                        sr4 | cs4 | cs8 | cs16

Configuration files are in config/. You don't need to include the prefix config/ when specifying --config . All files generated when running the code is under the directory specified by --exp. They are structured as:

<exp> # a folder named by the argument `--exp` given to main.py
├── datasets # all dataset files
│   ├── celeba # all CelebA files
│   └── lsun # all LSUN files
├── logs # contains checkpoints and samples produced during training
│   └── <doc> # a folder named by the argument `--doc` specified to main.py
│      └── checkpoint_x.pth # the checkpoint file saved at the x-th training iteration
├── image_samples # contains generated samples
│   └── <i>
│       ├── stochastic_variation.png # samples generated from checkpoint_x.pth, including original, degraded, mean, and std   
│       ├── results.pt # the pytorch tensor corresponding to stochastic_variation.png
│       └── y_0.pt # the pytorch tensor containing the input y of SNIPS

Downloading data

You can download the aligned and cropped CelebA files from their official source here. The LSUN files can be downloaded using this script. For our purposes, only the validation sets of LSUN bedroom and tower need to be downloaded.

Running SNIPS

If we want to run SNIPS on CelebA for the problem of super resolution by 2, with added noise of standard deviation 0.1, and obtain 3 variations, we can run the following

python main.py -i celeba --config celeba.yml --doc celeba -n 3 --degradation sr2 --sigma_0 0.1

Samples will be saved in /image_samples/celeba .

The available degradations are: Inpainting (inp), Uniform deblurring (deblur_uni), Gaussian deblurring (deblur_gauss), Super resolution by 2 (sr2) or by 4 (sr4), Compressive sensing by 4 (cs4), 8 (cs8), or 16 (cs16). The sigma_0 can be any value from 0 to 1.

Pretrained Checkpoints

Link: https://drive.google.com/drive/folders/1217uhIvLg9ZrYNKOR3XTRFSurt4miQrd?usp=sharing

These checkpoint files are provided as-is from the authors of NCSNv2. You can use the CelebA, LSUN-bedroom, and LSUN-tower datasets' pretrained checkpoints. We assume the --exp argument is set to exp.

Acknowledgement

This repo is largely based on the NCSNv2 repo, and uses modified code from this repo for implementing the blurring matrix.

References

If you find the code/idea useful for your research, please consider citing

@article{kawar2021snips,
  title={SNIPS: Solving Noisy Inverse Problems Stochastically},
  author={Kawar, Bahjat and Vaksman, Gregory and Elad, Michael},
  journal={arXiv preprint arXiv:2105.14951},
  year={2021}
}
Owner
Bahjat Kawar
Bahjat Kawar
This is 2nd term discrete maths project done by UCU students that uses backtracking to solve various problems.

Backtracking Project Sponsors This is a project made by UCU students: Olha Liuba - crossword solver implementation Hanna Yershova - sudoku solver impl

Dasha 4 Oct 17, 2021
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization

FAC-Net Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization Linjiang Huang (CUHK), Liang Wang (CASIA), Hongsheng

21 Nov 22, 2022
End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model

onnx-facial-lmk-detector End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model, model.onnx. Demo You can

atksh 42 Dec 30, 2022
ICRA 2021 - Robust Place Recognition using an Imaging Lidar

Robust Place Recognition using an Imaging Lidar A place recognition package using high-resolution imaging lidar. For best performance, a lidar equippe

Tixiao Shan 293 Dec 27, 2022
An implementation of the efficient attention module.

Efficient Attention An implementation of the efficient attention module. Description Efficient attention is an attention mechanism that substantially

Shen Zhuoran 194 Dec 15, 2022
Face recognition project by matching the features extracted using SIFT.

MV_FaceDetectionWithSIFT Face recognition project by matching the features extracted using SIFT. By : Aria Radmehr Professor : Ali Amiri Dependencies

Aria Radmehr 4 May 31, 2022
Car Parking Tracker Using OpenCv

Car Parking Vacancy Tracker Using OpenCv I used basic image processing methods i

Adwait Kelkar 30 Dec 03, 2022
Optimize Trading Strategies Using Freqtrade

Optimize trading strategy using Freqtrade Short demo on building, testing and optimizing a trading strategy using Freqtrade. The DevBootstrap YouTube

DevBootstrap 139 Jan 01, 2023
RL agent to play μRTS with Stable-Baselines3

Gym-μRTS with Stable-Baselines3/PyTorch This repo contains an attempt to reproduce Gridnet PPO with invalid action masking algorithm to play μRTS usin

Oleksii Kachaiev 24 Nov 11, 2022
The most simple and minimalistic navigation dashboard.

Navigation This project follows a goal to have simple and lightweight dashboard with different links. I use it to have my own self-hosted service dash

Yaroslav 23 Dec 23, 2022
LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021)

LV-BERT Introduction In this repo, we introduce LV-BERT by exploiting layer variety for BERT. For detailed description and experimental results, pleas

Weihao Yu 14 Aug 24, 2022
YOLOv5 detection interface - PyQt5 implementation

所有代码已上传,直接clone后,运行yolo_win.py即可开启界面。 2021/9/29:加入置信度选择 界面是在ultralytics的yolov5基础上建立的,界面使用pyqt5实现,内容较简单,娱乐而已。 功能: 模型选择 本地文件选择(视频图片均可) 开关摄像头

487 Dec 27, 2022
Self-Supervised depth kalilia

Self-Supervised depth kalilia

24 Oct 15, 2022
Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images

BlockGAN Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images BlockGAN: Learning 3D Object-aware Scene Rep

41 May 18, 2022
Unofficial implementation of Google "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization" in PyTorch

CutPaste CutPaste: image from paper Unofficial implementation of Google's "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization"

Lilit Yolyan 59 Nov 27, 2022
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be

Ziniu Hu 346 Dec 19, 2022
Code & Models for Temporal Segment Networks (TSN) in ECCV 2016

Temporal Segment Networks (TSN) We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation fo

1.4k Jan 01, 2023
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Environments Effi

Weirui Ye 671 Jan 03, 2023
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayes

Intel Labs 210 Jan 04, 2023