[CVPR 2021] Region-aware Adaptive Instance Normalization for Image Harmonization

Overview

RainNet — Official Pytorch Implementation

Sample image

Region-aware Adaptive Instance Normalization for Image Harmonization
Jun Ling, Han Xue, Li Song*, Rong Xie, Xiao Gu

Paper: link
Video: link


Table of Contents

  1. Introduction
  2. Preparation
  3. Usage
  4. Results
  5. Citation
  6. Acknowledgement

Introduction

This work treats image harmonization as a style transfer problem. In particular, we propose a simple yet effective Region-aware Adaptive Instance Normalization (RAIN) module, which explicitly formulates the visual style from the background and adaptively applies them to the foreground. With our settings, our RAIN module can be used as a drop-in module for existing image harmonization networks and is able to bring significant improvements. Extensive experiments on the existing image harmonization benchmark datasets shows the superior capability of the proposed method.

Preparation

1. Clone this repo:

git clone https://github.com/junleen/RainNet
cd RainNet

2. Requirements

  • Both Linux and Windows are supported, but Linux is recommended for compatibility reasons.
  • We have tested on Python 3.6 with PyTorch 1.4.0 and PyTorch 1.8.1+cu11.

install the required packages using pip:

pip3 install -r requirements.txt

or conda:

conda create -n rainnet python=3.6
conda activate rainnet
pip install -r requirements.txt

3. Prepare the data

  • Download iHarmony4 dataset and extract the images. Because the images are too big in the origianl dataset, we suggest you to resize the images (eg, 512x512, or 256x256) and save the resized images in your local device.
  • We provide the code in data/preprocess_iharmony4.py. For example, you can run:
    python data/preprocess_iharmony4.py --dir_iharmony4 <DIR_of_iHarmony4> --save_dir <SAVE_DIR> --image_size <IMAGE_SIZE>
    This will help you to resize the images to a fixed size, eg, <image_size, image_size>. If you want to keep the aspect ratio of the original images, please run:
    python data/preprocess_iharmony4.py --dir_iharmony4 <DIR_of_iHarmony4> --save_dir <SAVE_DIR> --image_size <IMAGE_SIZE> --keep_aspect_ratio

4. Download our pre-trained model

  • Download the pretrained model from Google Drive, and put net_G.pth in the directory checkpoints/experiment_train. You can also save the checkpoint in other directories and change the checkpoints_dir and name in /util/config.py accordingly.

Usage

1. Evaluation

We provide the code in evaluate.py, which supports the model evaluation in iHarmony4 dataset.

Run:

python evaluate.py --dataset_root <DATA_DIR> --save_dir evaluated --batch_size 16 --device cuda 

If you want to save the harmonized images, you can add --store_image at the end of the command. The evaluating results will be saved in the evaluated directory.

2. Testing with your own examples

In this project, we also provide the easy testing code in test.py to help you test on other cases. However, you are required to assign image paths in the file for each trial. For example, you can follow:

comp_path = 'examples/1.png' or ['examples/1.png', 'examples/2.png']
mask_path = 'examples/1-mask.png' or ['examples/1-mask.png', 'examples/2-mask.png']
real_path = 'examples/1-gt.png' or ['examples/1-gt.png', 'examples/2-gt.png']

If there is no groundtruth image, you can set real_path to None

3. Training your own model

Please update the command arguments in scripts/train.sh and run:

bash scripts/train.sh

Results

Comparison1 Comparison2

Citation

If you use our code or find this work useful for your future research, please kindly cite our paper:

@inproceedings{ling2021Rainnet,
    title     = {Region-aware Adaptive Instance Normalization for Image Harmonization}, 
    author    = {Ling, Jun and Xue, Han and Song, Li and Xie, Rong and Gu, Xiao}, 
    booktitle = {IEEE Conference on Computer Vision and Pattern Recognition},
    year      = {2021}
}

Acknowledgement

For some of the data modules and model functions used in this source code, we need to acknowledge the repo of DoveNet and pix2pix.

Dcf-game-infrastructure-public - Contains all the components necessary to run a DC finals (attack-defense CTF) game from OOO

dcf-game-infrastructure All the components necessary to run a game of the OOO DC

Order of the Overflow 46 Sep 13, 2022
an implementation of 3D Ken Burns Effect from a Single Image using PyTorch

3d-ken-burns This is a reference implementation of 3D Ken Burns Effect from a Single Image [1] using PyTorch. Given a single input image, it animates

Simon Niklaus 1.4k Dec 28, 2022
A robust pointcloud registration pipeline based on correlation.

PHASER: A Robust and Correspondence-Free Global Pointcloud Registration Ubuntu 18.04+ROS Melodic: Overview Pointcloud registration using correspondenc

ETHZ ASL 101 Dec 01, 2022
a baseline to practice

ccks2021_track3_baseline a baseline to practice 路径可能会有问题,自己改改 torch==1.7.1 pyhton==3.7.1 transformers==4.7.0 cuda==11.0 this is a baseline, you can fi

45 Nov 23, 2022
Cross-platform CLI tool to generate your Github profile's stats and summary.

ghs Cross-platform CLI tool to generate your Github profile's stats and summary. Preview Hop on to examples for other usecases. Jump to: Installation

HackerRank 134 Dec 20, 2022
A python library for face detection and features extraction based on mediapipe library

FaceAnalyzer A python library for face detection and features extraction based on mediapipe library Introduction FaceAnalyzer is a library based on me

Saifeddine ALOUI 14 Dec 30, 2022
PyTorch implementation for SDEdit: Image Synthesis and Editing with Stochastic Differential Equations

SDEdit: Image Synthesis and Editing with Stochastic Differential Equations Project | Paper | Colab PyTorch implementation of SDEdit: Image Synthesis a

536 Jan 05, 2023
Paddle pit - Rethinking Spatial Dimensions of Vision Transformers

基于Paddle实现PiT ——Rethinking Spatial Dimensions of Vision Transformers,arxiv 官方原版代

Hongtao Wen 4 Jan 15, 2022
We are More than Our JOints: Predicting How 3D Bodies Move

We are More than Our JOints: Predicting How 3D Bodies Move Citation This repo contains the official implementation of our paper MOJO: @inproceedings{Z

72 Oct 20, 2022
GeneralOCR is open source Optical Character Recognition based on PyTorch.

Introduction GeneralOCR is open source Optical Character Recognition based on PyTorch. It makes a fidelity and useful tool to implement SOTA models on

57 Dec 29, 2022
Implement face detection, and age and gender classification, and emotion classification.

YOLO Keras Face Detection Implement Face detection, and Age and Gender Classification, and Emotion Classification. (image from wider face dataset) Ove

Chloe 10 Nov 14, 2022
Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)

Table of Content Introduction Datasets Getting Started Requirements Usage Example Training & Evaluation CPM: Color-Pattern Makeup Transfer CPM is a ho

VinAI Research 248 Dec 13, 2022
Human motion synthesis using Unity3D

Human motion synthesis using Unity3D Prerequisite: Software: amc2bvh.exe, Unity 2017, Blender. Unity: RockVR (Video Capture), scenes, character models

Hao Xu 9 Jun 01, 2022
Complex-Valued Neural Networks (CVNN)Complex-Valued Neural Networks (CVNN)

Complex-Valued Neural Networks (CVNN) Done by @NEGU93 - J. Agustin Barrachina Using this library, the only difference with a Tensorflow code is that y

youceF 1 Nov 12, 2021
Unbiased Learning To Rank Algorithms (ULTRA)

This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiments and research on learning to rank with human annotated or noisy labels.

71 Dec 01, 2022
[CVPRW 21] "BNN - BN = ? Training Binary Neural Networks without Batch Normalization", Tianlong Chen, Zhenyu Zhang, Xu Ouyang, Zechun Liu, Zhiqiang Shen, Zhangyang Wang

BNN - BN = ? Training Binary Neural Networks without Batch Normalization Codes for this paper BNN - BN = ? Training Binary Neural Networks without Bat

VITA 40 Dec 30, 2022
PyTorch reimplementation of minimal-hand (CVPR2020)

Minimal Hand Pytorch Unofficial PyTorch reimplementation of minimal-hand (CVPR2020). you can also find in youtube or bilibili bare hand youtube or bil

Hao Meng 228 Dec 29, 2022
A simple baseline for 3d human pose estimation in tensorflow. Presented at ICCV 17.

3d-pose-baseline This is the code for the paper Julieta Martinez, Rayat Hossain, Javier Romero, James J. Little. A simple yet effective baseline for 3

Julieta Martinez 1.3k Jan 03, 2023
HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022 [Project page | Video] Getting sta

51 Nov 29, 2022
Crowd-Kit is a powerful Python library that implements commonly-used aggregation methods for crowdsourced annotation and offers the relevant metrics and datasets

Crowd-Kit: Computational Quality Control for Crowdsourcing Documentation Crowd-Kit is a powerful Python library that implements commonly-used aggregat

Toloka 125 Dec 30, 2022