Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)

Overview
Table of Content
  1. Introduction
  2. Datasets
  3. Getting Started
  4. Training & Evaluation

CPM: Color-Pattern Makeup Transfer

  • CPM is a holistic makeup transfer framework that outperforms previous state-of-the-art models on both light and extreme makeup styles.
  • CPM consists of an improved color transfer branch (based on BeautyGAN) and a novel pattern transfer branch.
  • We also introduce 4 new datasets (both real and synthesis) to train and evaluate CPM.
teaser.png
CPM can replicate both colors and patterns from a reference makeup style to another image.

Details of the dataset construction, model architecture, and experimental results can be found in our following paper:

@inproceedings{m_Nguyen-etal-CVPR21,
  author = {Thao Nguyen and Anh Tran and Minh Hoai},
  title = {Lipstick ain't enough: Beyond Color Matching for In-the-Wild Makeup Transfer},
  year = {2021},
  booktitle = {Proceedings of the {IEEE} Conference on Computer Vision and Pattern Recognition (CVPR)}
}

Please CITE our paper whenever our datasets or model implementation is used to help produce published results or incorporated into other software.

Open In Colab - arXiv - project page


Datasets

We introduce 4 new datasets: CPM-Real, CPM-Synt-1, CPM-Synt-2, and Stickers datasets. Besides, we also use published LADN's Dataset & Makeup Transfer Dataset.

CPM-Real and Stickers are crawled from Google Image Search, while CPM-Synt-1 & 2 are built on Makeup Transfer and Stickers. (Click on dataset name to download)

Name #imgs Description -
CPM-Real 3895 real - makeup styles CPM-Real.png
CPM-Synt-1 5555 synthesis - makeup images with pattern segmentation mask ./imgs/CPM-Synt-1.png
CPM-Synt-2 1625 synthesis - triplets: makeup, non-makeup, ground-truth ./imgs/CPM-Synt-2.png
Stickers 577 high-quality images with alpha channel Stickers.png

Dataset Folder Structure can be found here.

By downloading these datasets, USER agrees:

  • to use these datasets for research or educational purposes only
  • to not distribute or part of these datasets in any original or modified form.
  • and to cite our paper whenever these datasets are employed to help produce published results.

Getting Started

Requirements
Installation
# clone the repo
git clone https://github.com/VinAIResearch/CPM.git
cd CPM

# install dependencies
conda env create -f environment.yml
Download pre-trained models
mkdir checkpoints
cd checkpoints
wget https://public.vinai.io/CPM_checkpoints/color.pth
wget https://public.vinai.io/CPM_checkpoints/pattern.pth
  • Download [PRNet pre-trained model] from Drive. Put it in PRNet/net-data
Usage

➡️ You can now try it in Google Colab Open in Colab

# Color+Pattern: 
CUDA_VISIBLE_DEVICES=0 python main.py --style ./imgs/style-1.png --input ./imgs/non-makeup.png

# Color Only: 
CUDA_VISIBLE_DEVICES=0 python main.py --style ./imgs/style-1.png --input ./imgs/non-makeup.png --color_only

# Pattern Only: 
CUDA_VISIBLE_DEVICES=0 python main.py --style ./imgs/style-1.png --input ./imgs/non-makeup.png --pattern_only

Result image will be saved in result.png

result
From left to right: Style, Input & Output

Training and Evaluation

As stated in the paper, the Color Branch and Pattern Branch are totally independent. Yet, they shared the same workflow:

  1. Data preparation: Generating texture_map of faces.

  2. Training

Please redirect to Color Branch or Pattern Branch for further details.


🌿 If you have trouble running the code, please read Trouble Shooting before creating an issue. Thank you 🌿

Trouble Shooting
  1. [Solved] ImportError: libGL.so.1: cannot open shared object file: No such file or directory:

    sudo apt update
    sudo apt install libgl1-mesa-glx
    
  2. [Solved] RuntimeError: Expected tensor for argument #1 'input' to have the same device as tensor for argument #2 'weight'; but device 1 does not equal 0 (while checking arguments for cudnn_convolution) Add CUDA VISIBLE DEVICES before .py. Ex:

    CUDA_VISIBLE_DEVICES=0 python main.py
    
  3. [Solved] RuntimeError: cuda runtime error (999) : unknown error at /opt/conda/conda-bld/pytorch_1595629403081/work/aten/src/THC/THCGeneral.cpp:47

    sudo rmmod nvidia_uvm
    sudo modprobe nvidia_uvm
    
1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

Lihe Yang 209 Jan 01, 2023
TC-GNN with Pytorch integration

TC-GNN (Running Sparse GNN on Dense Tensor Core on Ampere GPU) Cite this project and paper. @inproceedings{TC-GNN, title={TC-GNN: Accelerating Spars

YUKE WANG 19 Dec 01, 2022
Sign-to-Speech for Sign Language Understanding: A case study of Nigerian Sign Language

Sign-to-Speech for Sign Language Understanding: A case study of Nigerian Sign Language This repository contains the code, model, and deployment config

16 Oct 23, 2022
Implementation of Nalbach et al. 2017 paper.

Deep Shading Convolutional Neural Networks for Screen-Space Shading Our project is based on Nalbach et al. 2017 paper. In this project, a set of buffe

Marcel Santana 17 Sep 08, 2022
Open-source implementation of Google Vizier for hyper parameters tuning

Advisor Introduction Advisor is the hyper parameters tuning system for black box optimization. It is the open-source implementation of Google Vizier w

tobe 1.5k Jan 04, 2023
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks

ReFine: Multi-Grained Explainability for GNNs We are trying hard to update the code, but it may take a while to complete due to our tight schedule rec

Shirley (Ying-Xin) Wu 47 Dec 16, 2022
Detectron2 is FAIR's next-generation platform for object detection and segmentation.

Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up r

Facebook Research 23.3k Jan 08, 2023
General Multi-label Image Classification with Transformers

General Multi-label Image Classification with Transformers Jack Lanchantin, Tianlu Wang, Vicente Ordóñez Román, Yanjun Qi Conference on Computer Visio

QData 154 Dec 21, 2022
SimulLR - PyTorch Implementation of SimulLR

PyTorch Implementation of SimulLR There is an interesting work[1] about simultan

11 Dec 22, 2022
Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

LiMuSE Overview Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION. LiMuSE explores group communication on a multi

Auditory Model and Cognitive Computing Lab 17 Oct 26, 2022
Official Pytorch implementation of ICLR 2018 paper Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge.

Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge: Official Pytorch implementation of ICLR 2018 paper Deep Learning for Phy

emmanuel 47 Nov 06, 2022
Pytorch implementation of face attention network

Face Attention Network Pytorch implementation of face attention network as described in Face Attention Network: An Effective Face Detector for the Occ

Hooks 312 Dec 09, 2022
Prototype python implementation of the ome-ngff table spec

Prototype python implementation of the ome-ngff table spec

Kevin Yamauchi 8 Nov 20, 2022
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Official Paddle Implementation] [Huggingface Gradio Demo] [Unofficial

442 Dec 16, 2022
PyTorch implementation of DCT fast weight RNNs

DCT based fast weights This repository contains the official code for the paper: Training and Generating Neural Networks in Compressed Weight Space. T

Kazuki Irie 4 Dec 24, 2022
PyTorch implementation for Graph Contrastive Learning with Augmentations

Graph Contrastive Learning with Augmentations PyTorch implementation for Graph Contrastive Learning with Augmentations [poster] [appendix] Yuning You*

Shen Lab at Texas A&M University 382 Dec 15, 2022
An Inverse Kinematics library aiming performance and modularity

IKPy Demo Live demos of what IKPy can do (click on the image below to see the video): Also, a presentation of IKPy: Presentation. Features With IKPy,

Pierre Manceron 481 Jan 02, 2023
official code for dynamic convolution decomposition

Revisiting Dynamic Convolution via Matrix Decomposition (ICLR 2021) A pytorch implementation of DCD. If you use this code in your research please cons

Yunsheng Li 110 Nov 23, 2022
Combining Reinforcement Learning and Constraint Programming for Combinatorial Optimization

Hybrid solving process for combinatorial optimization problems Combinatorial optimization has found applications in numerous fields, from aerospace to

117 Dec 13, 2022
Open-source Monocular Python HawkEye for Tennis

Tennis Tracking 🎾 Objectives Track the ball Detect court lines Detect the players To track the ball we used TrackNet - deep learning network for trac

ArtLabs 188 Jan 08, 2023