Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)

Overview
Table of Content
  1. Introduction
  2. Datasets
  3. Getting Started
  4. Training & Evaluation

CPM: Color-Pattern Makeup Transfer

  • CPM is a holistic makeup transfer framework that outperforms previous state-of-the-art models on both light and extreme makeup styles.
  • CPM consists of an improved color transfer branch (based on BeautyGAN) and a novel pattern transfer branch.
  • We also introduce 4 new datasets (both real and synthesis) to train and evaluate CPM.
teaser.png
CPM can replicate both colors and patterns from a reference makeup style to another image.

Details of the dataset construction, model architecture, and experimental results can be found in our following paper:

@inproceedings{m_Nguyen-etal-CVPR21,
  author = {Thao Nguyen and Anh Tran and Minh Hoai},
  title = {Lipstick ain't enough: Beyond Color Matching for In-the-Wild Makeup Transfer},
  year = {2021},
  booktitle = {Proceedings of the {IEEE} Conference on Computer Vision and Pattern Recognition (CVPR)}
}

Please CITE our paper whenever our datasets or model implementation is used to help produce published results or incorporated into other software.

Open In Colab - arXiv - project page


Datasets

We introduce 4 new datasets: CPM-Real, CPM-Synt-1, CPM-Synt-2, and Stickers datasets. Besides, we also use published LADN's Dataset & Makeup Transfer Dataset.

CPM-Real and Stickers are crawled from Google Image Search, while CPM-Synt-1 & 2 are built on Makeup Transfer and Stickers. (Click on dataset name to download)

Name #imgs Description -
CPM-Real 3895 real - makeup styles CPM-Real.png
CPM-Synt-1 5555 synthesis - makeup images with pattern segmentation mask ./imgs/CPM-Synt-1.png
CPM-Synt-2 1625 synthesis - triplets: makeup, non-makeup, ground-truth ./imgs/CPM-Synt-2.png
Stickers 577 high-quality images with alpha channel Stickers.png

Dataset Folder Structure can be found here.

By downloading these datasets, USER agrees:

  • to use these datasets for research or educational purposes only
  • to not distribute or part of these datasets in any original or modified form.
  • and to cite our paper whenever these datasets are employed to help produce published results.

Getting Started

Requirements
Installation
# clone the repo
git clone https://github.com/VinAIResearch/CPM.git
cd CPM

# install dependencies
conda env create -f environment.yml
Download pre-trained models
mkdir checkpoints
cd checkpoints
wget https://public.vinai.io/CPM_checkpoints/color.pth
wget https://public.vinai.io/CPM_checkpoints/pattern.pth
  • Download [PRNet pre-trained model] from Drive. Put it in PRNet/net-data
Usage

➡️ You can now try it in Google Colab Open in Colab

# Color+Pattern: 
CUDA_VISIBLE_DEVICES=0 python main.py --style ./imgs/style-1.png --input ./imgs/non-makeup.png

# Color Only: 
CUDA_VISIBLE_DEVICES=0 python main.py --style ./imgs/style-1.png --input ./imgs/non-makeup.png --color_only

# Pattern Only: 
CUDA_VISIBLE_DEVICES=0 python main.py --style ./imgs/style-1.png --input ./imgs/non-makeup.png --pattern_only

Result image will be saved in result.png

result
From left to right: Style, Input & Output

Training and Evaluation

As stated in the paper, the Color Branch and Pattern Branch are totally independent. Yet, they shared the same workflow:

  1. Data preparation: Generating texture_map of faces.

  2. Training

Please redirect to Color Branch or Pattern Branch for further details.


🌿 If you have trouble running the code, please read Trouble Shooting before creating an issue. Thank you 🌿

Trouble Shooting
  1. [Solved] ImportError: libGL.so.1: cannot open shared object file: No such file or directory:

    sudo apt update
    sudo apt install libgl1-mesa-glx
    
  2. [Solved] RuntimeError: Expected tensor for argument #1 'input' to have the same device as tensor for argument #2 'weight'; but device 1 does not equal 0 (while checking arguments for cudnn_convolution) Add CUDA VISIBLE DEVICES before .py. Ex:

    CUDA_VISIBLE_DEVICES=0 python main.py
    
  3. [Solved] RuntimeError: cuda runtime error (999) : unknown error at /opt/conda/conda-bld/pytorch_1595629403081/work/aten/src/THC/THCGeneral.cpp:47

    sudo rmmod nvidia_uvm
    sudo modprobe nvidia_uvm
    
Object detection on multiple datasets with an automatically learned unified label space.

Simple multi-dataset detection An object detector trained on multiple large-scale datasets with a unified label space; Winning solution of E

Xingyi Zhou 407 Dec 30, 2022
This repo contains research materials released by members of the Google Brain team in Tokyo.

Brain Tokyo Workshop 🧠 🗼 This repo contains research materials released by members of the Google Brain team in Tokyo. Past Projects Weight Agnostic

Google 1.2k Jan 02, 2023
Continual learning with sketched Jacobian approximations

Continual learning with sketched Jacobian approximations This repository contains the code for reproducing figures and results in the paper ``Provable

Machine Learning and Information Processing Laboratory 1 Jun 30, 2022
Weakly Supervised Text-to-SQL Parsing through Question Decomposition

Weakly Supervised Text-to-SQL Parsing through Question Decomposition The official repository for the paper "Weakly Supervised Text-to-SQL Parsing thro

14 Dec 19, 2022
The Habitat-Matterport 3D Research Dataset - the largest-ever dataset of 3D indoor spaces.

Habitat-Matterport 3D Dataset (HM3D) The Habitat-Matterport 3D Research Dataset is the largest-ever dataset of 3D indoor spaces. It consists of 1,000

Meta Research 62 Dec 27, 2022
PyTorch Connectomics: segmentation toolbox for EM connectomics

Introduction The field of connectomics aims to reconstruct the wiring diagram of the brain by mapping the neural connections at the level of individua

Zudi Lin 132 Dec 26, 2022
ICLR2021 (Under Review)

Self-Supervised Time Series Representation Learning by Inter-Intra Relational Reasoning This repository contains the official PyTorch implementation o

Haoyi Fan 58 Dec 30, 2022
pytorch implementation of fast-neural-style

fast-neural-style 🌇 🚀 NOTICE: This codebase is no longer maintained, please use the codebase from pytorch examples repository available at pytorch/e

Abhishek Kadian 405 Dec 15, 2022
Repository for GNSS-based position estimation using a Deep Neural Network

Code repository accompanying our work on 'Improving GNSS Positioning using Neural Network-based Corrections'. In this paper, we present a Deep Neural

32 Dec 13, 2022
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
PyTorch implementation of "Optimization Planning for 3D ConvNets"

Optimization-Planning-for-3D-ConvNets Code for the ICML 2021 paper: Optimization Planning for 3D ConvNets. Authors: Zhaofan Qiu, Ting Yao, Chong-Wah N

Zhaofan Qiu 2 Jan 12, 2022
Seg-Torch for Image Segmentation with Torch

Seg-Torch for Image Segmentation with Torch This work was sparked by my personal research on simple segmentation methods based on deep learning. It is

Eren Gölge 37 Dec 12, 2022
curl-impersonate: A special compilation of curl that makes it impersonate Chrome & Firefox

curl-impersonate A special compilation of curl that makes it impersonate real browsers. It can impersonate the four major browsers: Chrome, Edge, Safa

lwthiker 1.9k Jan 03, 2023
DEMix Layers for Modular Language Modeling

DEMix This repository contains modeling utilities for "DEMix Layers: Disentangling Domains for Modular Language Modeling" (Gururangan et. al, 2021). T

Suchin 43 Nov 11, 2022
[NeurIPS 2021] Official implementation of paper "Learning to Simulate Self-driven Particles System with Coordinated Policy Optimization".

Code for Coordinated Policy Optimization Webpage | Code | Paper | Talk (English) | Talk (Chinese) Hi there! This is the source code of the paper “Lear

DeciForce: Crossroads of Machine Perception and Autonomy 81 Dec 19, 2022
Learning Dense Representations of Phrases at Scale (Lee et al., 2020)

DensePhrases DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time. While it efficiently searches th

Princeton Natural Language Processing 540 Dec 30, 2022
Omnidirectional camera calibration in python

Omnidirectional Camera Calibration Key features pure python initial solution based on A Toolbox for Easily Calibrating Omnidirectional Cameras (Davide

Thomas Pönitz 12 Nov 22, 2022
Semi-supervised Domain Adaptation via Minimax Entropy

Semi-supervised Domain Adaptation via Minimax Entropy (ICCV 2019) Install pip install -r requirements.txt The code is written for Pytorch 0.4.0, but s

Vision and Learning Group 243 Jan 09, 2023
⚖️🔁🔮🕵️‍♂️🦹🖼️ Code for *Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances* paper.

Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances This repository contains the code for Measuring the Co

Daniel Steinberg 0 Nov 06, 2022