PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis

Overview

Impersonator

PyTorch implementation of our ICCV 2019 paper:

Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis

Please clone the newest codes.

[paper] [website] [Supplemental Material] [Dataset]

Update News

  • 10/05/2019, optimize the minimal requirements of GPU memory (at least 3.8GB available).

  • 10/24/2019, Imper-1.2.2, add the training document train.md.

  • 07/04/2020, Add the evaluation metrics on iPER dataset.

Getting Started

Python 3.6+, Pytorch 1.2, torchvision 0.4, cuda10.0, at least 3.8GB GPU memory and other requirements. All codes are tested on Linux Distributions (Ubutun 16.04 is recommended), and other platforms have not been tested yet.

Requirements

pip install -r requirements.txt
apt-get install ffmpeg

Installation

cd thirdparty/neural_renderer
python setup.py install

Download resources.

  1. Download pretrains.zip from OneDrive or BaiduPan and then move the pretrains.zip to the assets directory and unzip this file.
wget -O assets/pretrains.zip https://1drv.ws/u/s!AjjUqiJZsj8whLNw4QyntCMsDKQjSg?e=L77Elv
  1. Download checkpoints.zip from OneDrive or BaiduPan and then unzip the checkpoints.zip and move them to outputs directory.
wget -O outputs/checkpoints.zip https://1drv.ws/u/s!AjjUqiJZsj8whLNyoEh67Uu0LlxquA?e=dkOnhQ
  1. Download samples.zip from OneDrive or BaiduPan, and then unzip the samples.zip and move them to assets directory.
wget -O assets/samples.zip "https://1drv.ws/u/s\!AjjUqiJZsj8whLNz4BqnSgqrVwAXoQ?e=bC86db"

Running Demo

If you want to get the results of the demo shown on the webpage, you can run the following scripts. The results are saved in ./outputs/results/demos

  1. Demo of Motion Imitation

    python demo_imitator.py --gpu_ids 1
  2. Demo of Appearance Transfer

    python demo_swap.py --gpu_ids 1
  3. Demo of Novel View Synthesis

    python demo_view.py --gpu_ids 1

If you get the errors like RuntimeError: CUDA out of memory, please add the flag --batch_size 1, the minimal GPU memory is 3.8 GB.

Running custom examples (Details)

If you want to test other inputs (source image and reference images from yourself), here are some examples. Please replace the --ip YOUR_IP and --port YOUR_PORT for Visdom visualization.

  1. Motion Imitation

    • source image from iPER dataset
    python run_imitator.py --gpu_ids 0 --model imitator --output_dir ./outputs/results/  \
        --src_path      ./assets/src_imgs/imper_A_Pose/009_5_1_000.jpg    \
        --tgt_path      ./assets/samples/refs/iPER/024_8_2    \
        --bg_ks 13  --ft_ks 3 \
        --has_detector  --post_tune  \
        --save_res --ip YOUR_IP --port YOUR_PORT
    • source image from DeepFashion dataset
    python run_imitator.py --gpu_ids 0 --model imitator --output_dir ./outputs/results/  \
    --src_path      ./assets/src_imgs/fashion_woman/Sweaters-id_0000088807_4_full.jpg    \
    --tgt_path      ./assets/samples/refs/iPER/024_8_2    \
    --bg_ks 25  --ft_ks 3 \
    --has_detector  --post_tune  \
    --save_res --ip YOUR_IP --port YOUR_PORT
    • source image from Internet
    python run_imitator.py --gpu_ids 0 --model imitator --output_dir ./outputs/results/  \
        --src_path      ./assets/src_imgs/internet/men1_256.jpg    \
        --tgt_path      ./assets/samples/refs/iPER/024_8_2    \
        --bg_ks 7   --ft_ks 3 \
        --has_detector  --post_tune --front_warp \
        --save_res --ip YOUR_IP --port YOUR_PORT
  2. Appearance Transfer

    An example that source image from iPER and reference image from DeepFashion dataset.

    python run_swap.py --gpu_ids 0 --model imitator --output_dir ./outputs/results/  \
        --src_path      ./assets/src_imgs/imper_A_Pose/024_8_2_0000.jpg    \
        --tgt_path      ./assets/src_imgs/fashion_man/Sweatshirts_Hoodies-id_0000680701_4_full.jpg    \
        --bg_ks 13  --ft_ks 3 \
        --has_detector  --post_tune  --front_warp --swap_part body  \
        --save_res --ip http://10.10.10.100 --port 31102
  3. Novel View Synthesis

    python run_view.py --gpu_ids 0 --model viewer --output_dir ./outputs/results/  \
    --src_path      ./assets/src_imgs/internet/men1_256.jpg    \
    --bg_ks 13  --ft_ks 3 \
    --has_detector  --post_tune --front_warp --bg_replace \
    --save_res --ip http://10.10.10.100 --port 31102

If you get the errors like RuntimeError: CUDA out of memory, please add the flag --batch_size 1, the minimal GPU memory is 3.8 GB.

The details of each running scripts are shown in runDetails.md.

Training from Scratch

  • The details of training iPER dataset from scratch are shown in train.md.

Evaluation

Run ./scripts/motion_imitation/evaluate.sh. The details of the evaluation on iPER dataset in his_evaluators.

Announcement

In our paper, the results of LPIPS reported in Table 1, are calculated by 1 – distance score; thereby, the larger is more similar between two images. The beginning intention of using 1 – distance score is that it is more accurate to meet the definition of Similarity in LPIPS.

However, most other papers use the original definition that LPIPS = distance score; therefore, to eliminate the ambiguity and make it consistent with others, we update the results in Table 1 with the original definition in the latest paper.

Citation

thunmbnail

@InProceedings{lwb2019,
    title={Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis},
    author={Wen Liu and Zhixin Piao, Min Jie, Wenhan Luo, Lin Ma and Shenghua Gao},
    booktitle={The IEEE International Conference on Computer Vision (ICCV)},
    year={2019}
}
Owner
SVIP Lab
ShanghaiTech Vision and Intelligent Perception Lab
SVIP Lab
Remote sensing change detection using PaddlePaddle

Change Detection Laboratory Developing and benchmarking deep learning-based remo

Lin Manhui 15 Sep 23, 2022
A implemetation of the LRCN in mxnet

A implemetation of the LRCN in mxnet ##Abstract LRCN is a combination of CNN and RNN ##Installation Download UCF101 dataset ./avi2jpg.sh to split the

44 Aug 25, 2022
Bootstrapped Representation Learning on Graphs

Bootstrapped Representation Learning on Graphs This is the PyTorch implementation of BGRL Bootstrapped Representation Learning on Graphs The main scri

NerDS Lab :: Neural Data Science Lab 55 Jan 07, 2023
Object detection and instance segmentation toolkit based on PaddlePaddle.

Object detection and instance segmentation toolkit based on PaddlePaddle.

9.3k Jan 02, 2023
a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LSTM layers

RNN-Playwrite a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LS

Arno Barton 1 Oct 29, 2021
Library for converting from RGB / GrayScale image to base64 and back.

Library for converting RGB / Grayscale numpy images from to base64 and back. Installation pip install -U image_to_base_64 Conversion RGB to base 64 b

Vladimir Iglovikov 16 Aug 28, 2022
⚡️Optimizing einsum functions in NumPy, Tensorflow, Dask, and more with contraction order optimization.

Optimized Einsum Optimized Einsum: A tensor contraction order optimizer Optimized einsum can significantly reduce the overall execution time of einsum

Daniel Smith 653 Dec 30, 2022
Latte: Cross-framework Python Package for Evaluation of Latent-based Generative Models

Cross-framework Python Package for Evaluation of Latent-based Generative Models Latte Latte (for LATent Tensor Evaluation) is a cross-framework Python

Karn Watcharasupat 30 Sep 08, 2022
This repository contains tutorials for the py4DSTEM Python package

py4DSTEM Tutorials This repository contains tutorials for the py4DSTEM Python package. For more information about py4DSTEM, including installation ins

11 Dec 23, 2022
PyTorch code to run synthetic experiments.

Code repository for Invariant Risk Minimization Source code for the paper: @article{InvariantRiskMinimization, title={Invariant Risk Minimization}

Facebook Research 345 Dec 12, 2022
DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021)

DeepLM DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021) Run Please install th

Jingwei Huang 130 Dec 02, 2022
A stock generator that assess a list of stocks and returns the best stocks for investing and money allocations based on users choices of volatility, duration and number of stocks

Stock-Generator Please visit "Stock Generator.ipynb" for a clearer view and "Stock Generator.py" for scripts. The stock generator is designed to allow

jmengnyay 1 Aug 02, 2022
Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.

PyOpenVINO - An Experimental Python Implementation of OpenVINO Inference Engine (minimum-set) Description The PyOpenVINO is a spin-off product from my

Yasunori Shimura 7 Oct 31, 2022
Position detection system of mobile robot in the warehouse enviroment

Autonomous-Forklift-System About | GUI | Tests | Starting | License | Author | 🎯 About An application that run the autonomous forklift paletization a

Kamil Goś 1 Nov 24, 2021
Multiple-Object Tracking with Transformer

TransTrack: Multiple-Object Tracking with Transformer Introduction TransTrack: Multiple-Object Tracking with Transformer Models Training data Training

Peize Sun 537 Jan 04, 2023
Pytorch implementation of the paper Time-series Generative Adversarial Networks

TimeGAN-pytorch Pytorch implementation of the paper Time-series Generative Adversarial Networks presented at NeurIPS'19. Jinsung Yoon, Daniel Jarrett

Zhiwei ZHANG 21 Nov 24, 2022
Attentional Focus Modulates Automatic Finger‑tapping Movements

"Attentional Focus Modulates Automatic Finger‑tapping Movements", in Scientific Reports

Xingxun Jiang 1 Dec 02, 2021
Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more

Bayesian Neural Networks Pytorch implementations for the following approximate inference methods: Bayes by Backprop Bayes by Backprop + Local Reparame

1.4k Jan 07, 2023
🗺 General purpose U-Network implemented in Keras for image segmentation

TF-Unet General purpose U-Network implemented in Keras for image segmentation Getting started • Training • Evaluation Getting started Looking for Jupy

Or Fleisher 2 Aug 31, 2022
The code for SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network.

SAG-DTA The code is the implementation for the paper 'SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network'. Requirements py

Shugang Zhang 7 Aug 02, 2022