Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more

Overview

Bayesian Neural Networks

License: MIT Python 2.7+ Pytorch 1.0

Pytorch implementations for the following approximate inference methods:

We also provide code for:

Prerequisites

  • PyTorch
  • Numpy
  • Matplotlib

The project is written in python 2.7 and Pytorch 1.0.1. If CUDA is available, it will be used automatically. The models can also run on CPU as they are not excessively big.

Usage

Structure

Regression experiments

We carried out homoscedastic and heteroscedastic regression experiements on toy datasets, generated with (Gaussian Process ground truth), as well as on real data (six UCI datasets).

Notebooks/classification/(ModelName)_(ExperimentType).ipynb: Contains experiments using (ModelName) on (ExperimentType), i.e. homoscedastic/heteroscedastic. The heteroscedastic notebooks contain both toy and UCI dataset experiments for a given (ModelName).

We also provide Google Colab notebooks. This means that you can run on a GPU (for free!). No modifications required - all dependencies and datasets are added from within the notebooks - except for selecting Runtime -> Change runtime type -> Hardware accelerator -> GPU.

MNIST classification experiments

train_(ModelName)_(Dataset).py: Trains (ModelName) on (Dataset). Training metrics and model weights will be saved to the specified directories.

src/: General utilities and model definitions.

Notebooks/classification: An asortment of notebooks which allow for model training, evaluation and running of digit rotation uncertainty experiments. They also allow for weight distribution plotting and weight pruning. They allow for loading of pre-trained models for experimentation.

Bayes by Backprop (BBP)

(https://arxiv.org/abs/1505.05424)

Colab notebooks with regression models: BBP homoscedastic / heteroscedastic

Train a model on MNIST:

python train_BayesByBackprop_MNIST.py [--model [MODEL]] [--prior_sig [PRIOR_SIG]] [--epochs [EPOCHS]] [--lr [LR]] [--n_samples [N_SAMPLES]] [--models_dir [MODELS_DIR]] [--results_dir [RESULTS_DIR]]

For an explanation of the script's arguments:

python train_BayesByBackprop_MNIST.py -h

Best results are obtained with a Laplace prior.

Local Reparametrisation Trick

(https://arxiv.org/abs/1506.02557)

Bayes By Backprop inference where the mean and variance of activations are calculated in closed form. Activations are sampled instead of weights. This makes the variance of the Monte Carlo ELBO estimator scale as 1/M, where M is the minibatch size. Sampling weights scales (M-1)/M. The KL divergence between gaussians can also be computed in closed form, further reducing variance. Computation of each epoch is faster and so is convergence.

Train a model on MNIST:

python train_BayesByBackprop_MNIST.py --model Local_Reparam [--prior_sig [PRIOR_SIG]] [--epochs [EPOCHS]] [--lr [LR]] [--n_samples [N_SAMPLES]] [--models_dir [MODELS_DIR]] [--results_dir [RESULTS_DIR]]

MC Dropout

(https://arxiv.org/abs/1506.02142)

A fixed dropout rate of 0.5 is set.

Colab notebooks with regression models: MC Dropout homoscedastic heteroscedastic

Train a model on MNIST:

python train_MCDropout_MNIST.py [--weight_decay [WEIGHT_DECAY]] [--epochs [EPOCHS]] [--lr [LR]] [--models_dir [MODELS_DIR]] [--results_dir [RESULTS_DIR]]

For an explanation of the script's arguments:

python train_MCDropout_MNIST.py -h

Stochastic Gradient Langevin Dynamics (SGLD)

(https://www.ics.uci.edu/~welling/publications/papers/stoclangevin_v6.pdf)

In order to converge to the true posterior over w, the learning rate should be annealed according to the Robbins-Monro conditions. In practise, we use a fixed learning rate.

Colab notebooks with regression models: SGLD homoscedastic / heteroscedastic

Train a model on MNIST:

python train_SGLD_MNIST.py [--use_preconditioning [USE_PRECONDITIONING]] [--prior_sig [PRIOR_SIG]] [--epochs [EPOCHS]] [--lr [LR]] [--models_dir [MODELS_DIR]] [--results_dir [RESULTS_DIR]]

For an explanation of the script's arguments:

python train_SGLD_MNIST.py -h

pSGLD

(https://arxiv.org/abs/1512.07666)

SGLD with RMSprop preconditioning. A higher learning rate should be used than for vanilla SGLD.

Train a model on MNIST:

python train_SGLD_MNIST.py --use_preconditioning True [--prior_sig [PRIOR_SIG]] [--epochs [EPOCHS]] [--lr [LR]] [--models_dir [MODELS_DIR]] [--results_dir [RESULTS_DIR]]

Bootstrap MAP Ensemble

Multiple networks are trained on subsamples of the dataset.

Colab notebooks with regression models: MAP Ensemble homoscedastic / heteroscedastic

Train an ensemble on MNIST:

python train_Bootrap_Ensemble_MNIST.py [--weight_decay [WEIGHT_DECAY]] [--subsample [SUBSAMPLE]] [--n_nets [N_NETS]] [--epochs [EPOCHS]] [--lr [LR]] [--models_dir [MODELS_DIR]] [--results_dir [RESULTS_DIR]]

For an explanation of the script's arguments:

python train_Bootrap_Ensemble_MNIST.py -h

Kronecker-Factorised Laplace

(https://openreview.net/pdf?id=Skdvd2xAZ)

Train a MAP network and then calculate a second order taylor series aproxiamtion to the curvature around a mode of the posterior. A block diagonal Hessian approximation is used, where only intra-layer dependencies are accounted for. The Hessian is further approximated as the kronecker product of the expectation of a single datapoint's Hessian factors. Approximating the Hessian can take a while. Fortunately it only needs to be done once.

Train a MAP network on MNIST and approximate Hessian:

python train_KFLaplace_MNIST.py [--weight_decay [WEIGHT_DECAY]] [--hessian_diag_sig [HESSIAN_DIAG_SIG]] [--epochs [EPOCHS]] [--lr [LR]] [--models_dir [MODELS_DIR]] [--results_dir [RESULTS_DIR]]

For an explanation of the script's arguments:

python train_KFLaplace_MNIST.py -h

Note that we save the unscaled and uninverted Hessian factors. This will allow for computationally cheap changes to the prior at inference time as the Hessian will not need to be re-computed. Inference will require inverting the approximated Hessian factors and sampling from a matrix normal distribution. This is shown in notebooks/KFAC_Laplace_MNIST.ipynb

Stochastic Gradient Hamiltonian Monte Carlo

(https://arxiv.org/abs/1402.4102)

We implement the scale-adapted version of this algorithm, proposed here to find hyperparameters automatically during burn-in. We place a Gaussian prior over network weights and a Gamma hyperprior over the Gaussian's precision.

Run SG-HMC-SA burn in and sampler, saving weights in specified file.

python train_SGHMC_MNIST.py [--epochs [EPOCHS]] [--sample_freq [SAMPLE_FREQ]] [--burn_in [BURN_IN]] [--lr [LR]] [--models_dir [MODELS_DIR]] [--results_dir [RESULTS_DIR]]

For an explanation of the script's arguments:

python train_SGHMC_MNIST.py -h

Approximate Inference in Neural Networks

Map inference provides a point estimate of parameter values. When provided with out of distribution inputs, such as rotated digits, these models then to make wrong predictions with high confidence.

Uncertainty Decomposition

We can measure uncertainty in our models' predictions through predictive entropy. We can decompose this term in order to distinguish between 2 types of uncertainty. Uncertainty caused by noise in the data, or Aleatoric uncertainty, can be quantified as the expected entropy of model predictions. Model uncertainty or Epistemic uncertainty can be measured as the difference between total entropy and aleatoric entropy.

Results

Homoscedastic Regression

Toy homoscedastic regression task. Data is generated by a GP with a RBF kernel (l = 1, σn = 0.3). We use a single-output FC network with one hidden layer of 200 ReLU units to predict the regression mean μ(x). A fixed log σ is learnt separately.

Heteroscedastic Regression

Same scenario as previous section but log σ(x) is predicted from the input.

Toy heteroscedastic regression task. Data is generated by a GP with a RBF kernel (l = 1 σn = 0.3 · |x + 2|). We use a two-head network with 200 ReLU units to predict the regression mean μ(x) and log-standard deviation log σ(x).

Regression on UCI datasets

We performed heteroscedastic regression on the six UCI datasets (housing, concrete, energy efficiency, power plant, red wine and yacht datasets), using 10-foild cross validation. All these experiments are contained in the heteroscedastic notebooks. Note that results depend heavily on hyperparameter selection. Plots below show log-likelihoods and RMSEs on the train (semi-transparent colour) and test (solid colour). Circles and error bars correspond to the 10-fold cross validation mean and standard deviations respectively.

MNIST Classification

W is marginalised with 100 samples of the weights for all models except MAP, where only one set of weights is used.

MNIST Test MAP MAP Ensemble BBP Gaussian BBP GMM BBP Laplace BBP Local Reparam MC Dropout SGLD pSGLD
Log Like -572.9 -496.54 -1100.29 -1008.28 -892.85 -1086.43 -435.458 -828.29 -661.25
Error % 1.58 1.53 2.60 2.38 2.28 2.61 1.37 1.76 1.76

MNIST test results for methods under consideration. Estensive hyperparameter tunning has not been performed. We approximate the posterior predictive distribution with 100 MC samples. We use a FC network with two 1200 unit ReLU layers. If unspecified, the prior is Gaussian with std=0.1. P-SGLD uses RMSprop preconditioning.

The original paper for Bayes By Backprop reports around 1% error on MNIST. We find that this result is attainable only if approximate posterior variances are initialised to be very small (BBP Gauss 2). In this scenario, the distributions over weights resemble deltas, giving good predictive performance but bad uncertainty estimates. However, when initialising the variances to match the prior (BBP Gauss 1), we obtain the above results. The training curves for both of these hyperparameter configuration schemes are shown below:

MNIST Uncertainty

Total, aleatoric and epistemic uncertainties obtained when creating OOD samples by augmenting the MNIST test set with rotations:

Total and epistemic uncertainties obtained by testing our models, - which have been trained on MNIST -, on the KMNIST dataset:

Adversarial robustness

Total, aleatoric and epistemic uncertainties obtained when feeding our models with adversarial samples (fgsm).

Weight Distributions

Histograms of weights sampled from each model trained on MNIST. We draw 10 samples of w for each model.

Weight Pruning

#TODO

Owner
Machine Learning PhD student at University of Cambridge. Telecommunications (EE/CS) engineer.
Code for NeurIPS 2021 paper: Invariant Causal Imitation Learning for Generalizable Policies

Invariant Causal Imitation Learning for Generalizable Policies Ioana Bica, Daniel Jarrett, Mihaela van der Schaar Neural Information Processing System

Ioana Bica 17 Dec 01, 2022
1st place solution in CCF BDCI 2021 ULSEG challenge

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
kapre: Keras Audio Preprocessors

Kapre Keras Audio Preprocessors - compute STFT, ISTFT, Melspectrogram, and others on GPU real-time. Tested on Python 3.6 and 3.7 Why Kapre? vs. Pre-co

Keunwoo Choi 867 Dec 29, 2022
pytorch, hand(object) detect ,yolo v5,手检测

YOLO V5 物体检测,包括手部检测。 项目介绍 手部检测 手部检测示例如下 : 视频示例: 项目配置 作者开发环境: Python 3.7 PyTorch = 1.5.1 数据集 手部检测数据集 该项目数据集采用 TV-Hand 和 COCO-Hand (COCO-Hand-Big 部分) 进

Eric.Lee 11 Dec 20, 2022
The Python ensemble sampling toolkit for affine-invariant MCMC

emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense

Dan Foreman-Mackey 1.3k Dec 31, 2022
Official implementation of the ICCV 2021 paper: "The Power of Points for Modeling Humans in Clothing".

The Power of Points for Modeling Humans in Clothing (ICCV 2021) This repository contains the official PyTorch implementation of the ICCV 2021 paper: T

Qianli Ma 158 Nov 24, 2022
bespoke tooling for offensive security's Windows Usermode Exploit Dev course (OSED)

osed-scripts bespoke tooling for offensive security's Windows Usermode Exploit Dev course (OSED) Table of Contents Standalone Scripts egghunter.py fin

epi 268 Jan 05, 2023
CVPR2021 Workshop - HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization.

HDRUNet [Paper Link] HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization By Xiangyu Chen, Yihao Liu, Zhengwen Zhang, Yu Qiao an

XyChen 105 Dec 20, 2022
A U-Net combined with a variational auto-encoder that is able to learn conditional distributions over semantic segmentations.

Probabilistic U-Net + **Update** + An improved Model (the Hierarchical Probabilistic U-Net) + LIDC crops is now available. See below. Re-implementatio

Simon Kohl 498 Dec 26, 2022
Code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2021

The repo provides the code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2

Yuning Mao 18 May 24, 2022
This repository contains the code for our paper VDA (public in EMNLP2021 main conference)

Virtual Data Augmentation: A Robust and General Framework for Fine-tuning Pre-trained Models This repository contains the code for our paper VDA (publ

RUCAIBox 13 Aug 06, 2022
Disentangled Lifespan Face Synthesis

Disentangled Lifespan Face Synthesis Project Page | Paper Demo on Colab Preparation Please follow this github to prepare the environments and dataset.

何森 50 Sep 20, 2022
RE3: State Entropy Maximization with Random Encoders for Efficient Exploration

State Entropy Maximization with Random Encoders for Efficient Exploration (RE3) (ICML 2021) Code for State Entropy Maximization with Random Encoders f

Younggyo Seo 47 Nov 29, 2022
Code accompanying the paper on "An Empirical Investigation of Domain Generalization with Empirical Risk Minimizers" published at NeurIPS, 2021

Code for "An Empirical Investigation of Domian Generalization with Empirical Risk Minimizers" (NeurIPS 2021) Motivation and Introduction Domain Genera

Meta Research 15 Dec 27, 2022
code for `Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation`

Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation (CVPR 2021) Introduction PBR is a conceptually simple yet effective

H.Chen 143 Jan 05, 2023
A Multi-modal Model Chinese Spell Checker Released on ACL2021.

ReaLiSe ReaLiSe is a multi-modal Chinese spell checking model. This the office code for the paper Read, Listen, and See: Leveraging Multimodal Informa

DaDa 106 Dec 29, 2022
noisy labels; missing labels; semi-supervised learning; entropy; uncertainty; robustness and generalisation.

ProSelfLC: CVPR 2021 ProSelfLC: Progressive Self Label Correction for Training Robust Deep Neural Networks For any specific discussion or potential fu

amos_xwang 57 Dec 04, 2022
Python Fanduel API (2021) - Lineup Automation

Southpaw is a python package that provides access to the Fanduel API. Optimize your DFS experience by programmatically updating your lineups, analyzin

Brandin Canfield 13 Jan 04, 2023
A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

Jun-Yan Zhu 27 Aug 08, 2022
Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

M3D-VTON: A Monocular-to-3D Virtual Try-On Network Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network" Paper | Suppl

109 Dec 29, 2022