Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more

Overview

Bayesian Neural Networks

License: MIT Python 2.7+ Pytorch 1.0

Pytorch implementations for the following approximate inference methods:

We also provide code for:

Prerequisites

  • PyTorch
  • Numpy
  • Matplotlib

The project is written in python 2.7 and Pytorch 1.0.1. If CUDA is available, it will be used automatically. The models can also run on CPU as they are not excessively big.

Usage

Structure

Regression experiments

We carried out homoscedastic and heteroscedastic regression experiements on toy datasets, generated with (Gaussian Process ground truth), as well as on real data (six UCI datasets).

Notebooks/classification/(ModelName)_(ExperimentType).ipynb: Contains experiments using (ModelName) on (ExperimentType), i.e. homoscedastic/heteroscedastic. The heteroscedastic notebooks contain both toy and UCI dataset experiments for a given (ModelName).

We also provide Google Colab notebooks. This means that you can run on a GPU (for free!). No modifications required - all dependencies and datasets are added from within the notebooks - except for selecting Runtime -> Change runtime type -> Hardware accelerator -> GPU.

MNIST classification experiments

train_(ModelName)_(Dataset).py: Trains (ModelName) on (Dataset). Training metrics and model weights will be saved to the specified directories.

src/: General utilities and model definitions.

Notebooks/classification: An asortment of notebooks which allow for model training, evaluation and running of digit rotation uncertainty experiments. They also allow for weight distribution plotting and weight pruning. They allow for loading of pre-trained models for experimentation.

Bayes by Backprop (BBP)

(https://arxiv.org/abs/1505.05424)

Colab notebooks with regression models: BBP homoscedastic / heteroscedastic

Train a model on MNIST:

python train_BayesByBackprop_MNIST.py [--model [MODEL]] [--prior_sig [PRIOR_SIG]] [--epochs [EPOCHS]] [--lr [LR]] [--n_samples [N_SAMPLES]] [--models_dir [MODELS_DIR]] [--results_dir [RESULTS_DIR]]

For an explanation of the script's arguments:

python train_BayesByBackprop_MNIST.py -h

Best results are obtained with a Laplace prior.

Local Reparametrisation Trick

(https://arxiv.org/abs/1506.02557)

Bayes By Backprop inference where the mean and variance of activations are calculated in closed form. Activations are sampled instead of weights. This makes the variance of the Monte Carlo ELBO estimator scale as 1/M, where M is the minibatch size. Sampling weights scales (M-1)/M. The KL divergence between gaussians can also be computed in closed form, further reducing variance. Computation of each epoch is faster and so is convergence.

Train a model on MNIST:

python train_BayesByBackprop_MNIST.py --model Local_Reparam [--prior_sig [PRIOR_SIG]] [--epochs [EPOCHS]] [--lr [LR]] [--n_samples [N_SAMPLES]] [--models_dir [MODELS_DIR]] [--results_dir [RESULTS_DIR]]

MC Dropout

(https://arxiv.org/abs/1506.02142)

A fixed dropout rate of 0.5 is set.

Colab notebooks with regression models: MC Dropout homoscedastic heteroscedastic

Train a model on MNIST:

python train_MCDropout_MNIST.py [--weight_decay [WEIGHT_DECAY]] [--epochs [EPOCHS]] [--lr [LR]] [--models_dir [MODELS_DIR]] [--results_dir [RESULTS_DIR]]

For an explanation of the script's arguments:

python train_MCDropout_MNIST.py -h

Stochastic Gradient Langevin Dynamics (SGLD)

(https://www.ics.uci.edu/~welling/publications/papers/stoclangevin_v6.pdf)

In order to converge to the true posterior over w, the learning rate should be annealed according to the Robbins-Monro conditions. In practise, we use a fixed learning rate.

Colab notebooks with regression models: SGLD homoscedastic / heteroscedastic

Train a model on MNIST:

python train_SGLD_MNIST.py [--use_preconditioning [USE_PRECONDITIONING]] [--prior_sig [PRIOR_SIG]] [--epochs [EPOCHS]] [--lr [LR]] [--models_dir [MODELS_DIR]] [--results_dir [RESULTS_DIR]]

For an explanation of the script's arguments:

python train_SGLD_MNIST.py -h

pSGLD

(https://arxiv.org/abs/1512.07666)

SGLD with RMSprop preconditioning. A higher learning rate should be used than for vanilla SGLD.

Train a model on MNIST:

python train_SGLD_MNIST.py --use_preconditioning True [--prior_sig [PRIOR_SIG]] [--epochs [EPOCHS]] [--lr [LR]] [--models_dir [MODELS_DIR]] [--results_dir [RESULTS_DIR]]

Bootstrap MAP Ensemble

Multiple networks are trained on subsamples of the dataset.

Colab notebooks with regression models: MAP Ensemble homoscedastic / heteroscedastic

Train an ensemble on MNIST:

python train_Bootrap_Ensemble_MNIST.py [--weight_decay [WEIGHT_DECAY]] [--subsample [SUBSAMPLE]] [--n_nets [N_NETS]] [--epochs [EPOCHS]] [--lr [LR]] [--models_dir [MODELS_DIR]] [--results_dir [RESULTS_DIR]]

For an explanation of the script's arguments:

python train_Bootrap_Ensemble_MNIST.py -h

Kronecker-Factorised Laplace

(https://openreview.net/pdf?id=Skdvd2xAZ)

Train a MAP network and then calculate a second order taylor series aproxiamtion to the curvature around a mode of the posterior. A block diagonal Hessian approximation is used, where only intra-layer dependencies are accounted for. The Hessian is further approximated as the kronecker product of the expectation of a single datapoint's Hessian factors. Approximating the Hessian can take a while. Fortunately it only needs to be done once.

Train a MAP network on MNIST and approximate Hessian:

python train_KFLaplace_MNIST.py [--weight_decay [WEIGHT_DECAY]] [--hessian_diag_sig [HESSIAN_DIAG_SIG]] [--epochs [EPOCHS]] [--lr [LR]] [--models_dir [MODELS_DIR]] [--results_dir [RESULTS_DIR]]

For an explanation of the script's arguments:

python train_KFLaplace_MNIST.py -h

Note that we save the unscaled and uninverted Hessian factors. This will allow for computationally cheap changes to the prior at inference time as the Hessian will not need to be re-computed. Inference will require inverting the approximated Hessian factors and sampling from a matrix normal distribution. This is shown in notebooks/KFAC_Laplace_MNIST.ipynb

Stochastic Gradient Hamiltonian Monte Carlo

(https://arxiv.org/abs/1402.4102)

We implement the scale-adapted version of this algorithm, proposed here to find hyperparameters automatically during burn-in. We place a Gaussian prior over network weights and a Gamma hyperprior over the Gaussian's precision.

Run SG-HMC-SA burn in and sampler, saving weights in specified file.

python train_SGHMC_MNIST.py [--epochs [EPOCHS]] [--sample_freq [SAMPLE_FREQ]] [--burn_in [BURN_IN]] [--lr [LR]] [--models_dir [MODELS_DIR]] [--results_dir [RESULTS_DIR]]

For an explanation of the script's arguments:

python train_SGHMC_MNIST.py -h

Approximate Inference in Neural Networks

Map inference provides a point estimate of parameter values. When provided with out of distribution inputs, such as rotated digits, these models then to make wrong predictions with high confidence.

Uncertainty Decomposition

We can measure uncertainty in our models' predictions through predictive entropy. We can decompose this term in order to distinguish between 2 types of uncertainty. Uncertainty caused by noise in the data, or Aleatoric uncertainty, can be quantified as the expected entropy of model predictions. Model uncertainty or Epistemic uncertainty can be measured as the difference between total entropy and aleatoric entropy.

Results

Homoscedastic Regression

Toy homoscedastic regression task. Data is generated by a GP with a RBF kernel (l = 1, σn = 0.3). We use a single-output FC network with one hidden layer of 200 ReLU units to predict the regression mean μ(x). A fixed log σ is learnt separately.

Heteroscedastic Regression

Same scenario as previous section but log σ(x) is predicted from the input.

Toy heteroscedastic regression task. Data is generated by a GP with a RBF kernel (l = 1 σn = 0.3 · |x + 2|). We use a two-head network with 200 ReLU units to predict the regression mean μ(x) and log-standard deviation log σ(x).

Regression on UCI datasets

We performed heteroscedastic regression on the six UCI datasets (housing, concrete, energy efficiency, power plant, red wine and yacht datasets), using 10-foild cross validation. All these experiments are contained in the heteroscedastic notebooks. Note that results depend heavily on hyperparameter selection. Plots below show log-likelihoods and RMSEs on the train (semi-transparent colour) and test (solid colour). Circles and error bars correspond to the 10-fold cross validation mean and standard deviations respectively.

MNIST Classification

W is marginalised with 100 samples of the weights for all models except MAP, where only one set of weights is used.

MNIST Test MAP MAP Ensemble BBP Gaussian BBP GMM BBP Laplace BBP Local Reparam MC Dropout SGLD pSGLD
Log Like -572.9 -496.54 -1100.29 -1008.28 -892.85 -1086.43 -435.458 -828.29 -661.25
Error % 1.58 1.53 2.60 2.38 2.28 2.61 1.37 1.76 1.76

MNIST test results for methods under consideration. Estensive hyperparameter tunning has not been performed. We approximate the posterior predictive distribution with 100 MC samples. We use a FC network with two 1200 unit ReLU layers. If unspecified, the prior is Gaussian with std=0.1. P-SGLD uses RMSprop preconditioning.

The original paper for Bayes By Backprop reports around 1% error on MNIST. We find that this result is attainable only if approximate posterior variances are initialised to be very small (BBP Gauss 2). In this scenario, the distributions over weights resemble deltas, giving good predictive performance but bad uncertainty estimates. However, when initialising the variances to match the prior (BBP Gauss 1), we obtain the above results. The training curves for both of these hyperparameter configuration schemes are shown below:

MNIST Uncertainty

Total, aleatoric and epistemic uncertainties obtained when creating OOD samples by augmenting the MNIST test set with rotations:

Total and epistemic uncertainties obtained by testing our models, - which have been trained on MNIST -, on the KMNIST dataset:

Adversarial robustness

Total, aleatoric and epistemic uncertainties obtained when feeding our models with adversarial samples (fgsm).

Weight Distributions

Histograms of weights sampled from each model trained on MNIST. We draw 10 samples of w for each model.

Weight Pruning

#TODO

Owner
Machine Learning PhD student at University of Cambridge. Telecommunications (EE/CS) engineer.
This repo is to be freely used by ML devs to check the GAN performances without coding from scratch.

GANs for Fun Created because I can! GOAL The goal of this repo is to be freely used by ML devs to check the GAN performances without coding from scrat

Sagnik Roy 13 Jan 26, 2022
Code for testing convergence rates of Lipschitz learning on graphs

📈 LipschitzLearningRates The code in this repository reproduces the experimental results on convergence rates for k-nearest neighbor graph infinity L

2 Dec 20, 2021
"Graph Neural Controlled Differential Equations for Traffic Forecasting", AAAI 2022

Graph Neural Controlled Differential Equations for Traffic Forecasting Setup Python environment for STG-NCDE Install python environment $ conda env cr

Jeongwhan Choi 55 Dec 28, 2022
Generating Radiology Reports via Memory-driven Transformer

R2Gen This is the implementation of Generating Radiology Reports via Memory-driven Transformer at EMNLP-2020. Citations If you use or extend our work,

CUHK-SZ NLP Group 101 Dec 13, 2022
Irrigation controller for Home Assistant

Irrigation Unlimited This integration is for irrigation systems large and small. It can offer some complex arrangements without large and messy script

Robert Cook 176 Jan 02, 2023
Tensorflow python implementation of "Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos"

Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos This repository is the official tensorflow python implementation

Yasamin Jafarian 287 Jan 06, 2023
Saeed Lotfi 28 Dec 12, 2022
CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images

Code and result about CCAFNet(IEEE TMM) 'CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images' IEE

zyrant丶 14 Dec 29, 2021
Code for our paper "Interactive Analysis of CNN Robustness"

Perturber Code for our paper "Interactive Analysis of CNN Robustness" Datasets Feature visualizations: Google Drive Fine-tuning checkpoints as saved m

Stefan Sietzen 0 Aug 17, 2021
Container : Context Aggregation Network

Container : Context Aggregation Network If you use this code for a paper please cite: @article{gao2021container, title={Container: Context Aggregati

AI2 47 Dec 16, 2022
Moer Grounded Image Captioning by Distilling Image-Text Matching Model

Moer Grounded Image Captioning by Distilling Image-Text Matching Model Requirements Python 3.7 Pytorch 1.2 Prepare data Please use git clone --recurse

YE Zhou 60 Dec 16, 2022
(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

xxxnell 656 Dec 30, 2022
机器学习、深度学习、自然语言处理等人工智能基础知识总结。

说明 机器学习、深度学习、自然语言处理基础知识总结。 目前主要参考李航老师的《统计学习方法》一书,也有一些内容例如XGBoost、聚类、深度学习相关内容、NLP相关内容等是书中未提及的。

Peter 445 Dec 12, 2022
Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks

MGANs Training & Testing code (torch), pre-trained models and supplementary materials for "Precomputed Real-Time Texture Synthesis with Markovian Gene

290 Nov 15, 2022
DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

DatasetGAN This is the official code and data release for: DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort Yuxuan Zhang*, Huan Li

302 Jan 05, 2023
A curated list of awesome Machine Learning frameworks, libraries and software.

Awesome Machine Learning A curated list of awesome machine learning frameworks, libraries and software (by language). Inspired by awesome-php. If you

Joseph Misiti 57.1k Jan 03, 2023
The official implementation of paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks" (IJCV under review).

DGMS This is the code of the paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks". Installation Our code works with Pytho

Runpei Dong 3 Aug 28, 2022
The devkit of the nuPlan dataset.

The devkit of the nuPlan dataset.

Motional 264 Jan 03, 2023
SurfEmb (CVPR 2022) - SurfEmb: Dense and Continuous Correspondence Distributions

SurfEmb SurfEmb: Dense and Continuous Correspondence Distributions for Object Pose Estimation with Learnt Surface Embeddings Rasmus Laurvig Haugard, A

Rasmus Haugaard 56 Nov 19, 2022
Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.

xTune Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning. Environment DockerFile: dancingsoul/pytorch:xTune Install the f

Bo Zheng 42 Dec 09, 2022