Introducing neural networks to predict stock prices

Overview

IntroNeuralNetworks in Python: A Template Project

forthebadge made-with-python

GitHub license PRs Welcome

IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how one can use neural networks to predict stock prices. It is built with the goal of allowing beginners to understand the fundamentals of how neural network models are built and go through the entire workflow of machine learning. This model is in no way sophisticated, so do improve upon this base project in any way.

The core steps involved is: download stock price data from Yahoo Finance, preprocess the dataframes according to specifications for neural network libraries and finally train the neural network model and backtest over historical data.

This model is not meant to be used to live trade stocks with. However, with further extensions, this model can definitely be used to support your trading strategies.

I hope you find this project useful in your journey as a trader or a machine learning engineer. Personally, this is my first major machine learning and python project, so I'll appreciate if you leave a star.

As a disclaimer, this is a purely educational project. Any backtested results do not guarantee performance in live trading. Do live trading at your own risk. This guide and further analysis has been cross-posted in my blog, Engineer Quant

Contents

Overview

The overall workflow for this project is as such:

  1. Acquire the stock price data - this will give us our features for the model.
  2. Preprocess the data - make the train and test datasets.
  3. Use the neural network to learn from the training data.
  4. Backtest the model across a date range.
  5. Make useful stock price predictions
  6. Supplement your trading strategies with the predictions

Although this is very general, it is essentially what you need to build your own machine learning or neural network model.

Getting Started

For those of you that do not want to learn about the construction of the model (although I highly suggest you to), clone and download the project, unzip it to your preferred folder and run the following code in your computer.

pip install -r requirements.txt
python LSTM_model.py

It's as simple as that!

Requirements

For those who want a more details manual, this program is built in Python 3.6. If you are using an earlier version of Python, like Python 3.x, you will run into problems with syntax when it comes to f strings. I do suggest that you update to Python 3.6.

pip install -r requirements.txt

Stock Price Data

Now we come to the most dreaded part of any machine learning project: data acquisiton and data preprocessing. As tedious and hard as it might be, it is vital to have high quality data to feed into your model. As the saying goes "Garbage in. Garbage out." This is most applicable to machine learning models, as your model is only as good as the data it is fed. Processing the data comes in two parts: downloading the data, and forming our datasets for the model. Thanks to Yahoo Finance API, downloading the stock price data is relatively simple (sadly I doubt not for long).

To download the stock price data, we use pandas_datareader which after a while did not work. So we use this fix and use fix_yahoo_finance. If this fails (maybe in the near future), you can just download the stock data directly from Yahoo for free and save it as stock_price.csv.

Preprocessing

Once we have the stock price data for the stocks we are going to predict, we now need to create the training and testing datasets.

Preparing Train Dataset

The goal for our training dataset is to have rows of a given length (the number of prices used to predict) along with the correct prediction to evaluate our model against. I have given the user the option of choosing how much of the stock price data you want to use for your training data when calling the Preprocessing class. Generating the training data is done quite simply using numpy.arrays and a for loop. You can perform this by running:

Preprocessing.get_train(seq_len)

Preparing Test Dataset

The test dataset is prepared in precisely the same way as the training dataset, just that the length of the data is different. This is done with the following code:

Preprocessing.get_test(seq_len)

Neural Network Models

Since the main goal of this project is to get acquainted with machine learning and neural networks, I will explain what models I have used and why they may be efficient in predicting stock prices. If you want a more detailed explanation of neural networks, check out my blog.

Multilayer Perceptron Model

A multilayer perceptron is the most basic of neural networks that uses backpropagation to learn from the training dataset. If you want more details about how the multilayer perceptron works, do read this article.

LSTM Model

The benefit of using a Long Short Term Memory neural network is that there is an extra element of long term memory, where the neural network has data about the data in prior layers as a 'memory' which allows the model to find the relationships between the data itself and between the data and output. Again for more details, please read this article

Backtesting

My backtest system is simple in the sense that it only evaluates how well the model predicts the stock price. It does not actually consider how to trade based on these predictions (that is the topic of developing trading strategies using this model). To run just the backtesting, you will need to run

back_test(strategy, seq_len, ticker, start_date, end_date, dim)

The dim variable is the dimensions of the data set you want and it is necessary to successfully train the models.

Stock Predictions

Now that your model has been trained and backtested, we can use it to make stock price predictions. In order to make stock price predictions, you need to download the current data and use the predict method of keras module. Run the following code after training and backtesting the model:

data = pdr.get_data_yahoo("AAPL", "2017-12-19", "2018-01-03")
stock = data["Adj Close"]
X_predict = np.array(stock).reshape((1, 10)) / 200
print(model.predict(X_predict)*200)

Extensions

As mentioned before, this projected is highly extendable, and here some ideas for improving the project.

Getting Data

Getting data is pretty standard using Yahoo Finance. However, you may want to look into clustering data in terms of trends of stocks (maybe by sector, or if you want to be really precise, use k-means clustering?).

Neural Network Model

This neural network can be improved in many ways:

  1. Tuning hyperparameters: find the optimal hyperparameters that gives the best prediction
  2. Backtesting: Make the backtesting system more robust (I have left certain important aspects out for you to figure). Maybe include buying and shorting?
  3. Try different Neural Networks: There are plenty of options and see which works best for your stocks.

Supporting Trade

As I said earlier, this model can be used to support trading by using this prediction in your trading strategy. Examples include:

  1. Simple long short strategy: you buy if the prediction is higher, and vice versa
  2. Intraday Trading: if you can get your hands on minute data or even tick data, you can use this predictor to trade.
  3. Statistical Arbitrage: use can also use the predictions of various stock prices to find the correlation between stocks.

Contributing

Feel free to fork this and submit PRs. I am open and grateful for any suggestions or bug fixes. Hope you enjoy this project!


For more content like this, check out my academic blog at https://medium.com/engineer-quant

Owner
Vivek Palaniappan
Keen on finding effective solutions to complex problems - looking into the broad intersection between engineering, finance and AI.
Vivek Palaniappan
PyTorch common framework to accelerate network implementation, training and validation

pytorch-framework PyTorch common framework to accelerate network implementation, training and validation. This framework is inspired by works from MML

Dongliang Cao 3 Dec 19, 2022
Deep Learning Specialization by Andrew Ng, deeplearning.ai.

Deep Learning Specialization on Coursera Master Deep Learning, and Break into AI This is my personal projects for the course. The course covers deep l

Engen 1.5k Jan 07, 2023
Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image (ICCV 2021)

Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color

75 Dec 02, 2022
This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems

Doctoral dissertation of Zheng Zhao This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression pro

Zheng Zhao 21 Nov 14, 2022
A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules

CapsNet-Tensorflow A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules Notes: The current version

Huadong Liao 3.8k Dec 29, 2022
Codebase for BMVC 2021 paper "Text Based Person Search with Limited Data"

Text Based Person Search with Limited Data This is the codebase for our BMVC 2021 paper. Please bear with me refactoring this codebase after CVPR dead

Xiao Han 33 Nov 24, 2022
This package contains deep learning models and related scripts for RoseTTAFold

RoseTTAFold This package contains deep learning models and related scripts to run RoseTTAFold This repository is the official implementation of RoseTT

1.6k Jan 03, 2023
Repository for the electrical and ICT benchmark model developed in the ERIGrid 2.0 project.

Benchmark Model Electrical and ICT System This repository contains the documentation, code, and models for the electrical and ICT benchmark model deve

ERIGrid 2.0 1 Nov 29, 2021
Implementation of the state-of-the-art vision transformers with tensorflow

ViT Tensorflow This repository contains the tensorflow implementation of the state-of-the-art vision transformers (a category of computer vision model

Mohammadmahdi NouriBorji 2 Mar 16, 2022
SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021)

SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021) This repository contains the official PyTorch implementa

Qianli Ma 133 Jan 05, 2023
PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+

PaddlePaddle Vision Transformers State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 🤖 PaddlePaddle Visual Transformers (PaddleViT or

1k Dec 28, 2022
Official PyTorch implementation of the paper "Self-Supervised Relational Reasoning for Representation Learning", NeurIPS 2020 Spotlight.

Official PyTorch implementation of the paper: "Self-Supervised Relational Reasoning for Representation Learning" (2020), Patacchiola, M., and Storkey,

Massimiliano Patacchiola 135 Jan 03, 2023
Improving adversarial robustness by a coupling rejection strategy

Adversarial Training with Rectified Rejection The code for the paper Adversarial Training with Rectified Rejection. Environment settings and libraries

Tianyu Pang 29 Jan 06, 2023
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
RoBERTa Marathi Language model trained from scratch during huggingface 🤗 x flax community week

RoBERTa base model for Marathi Language (मराठी भाषा) Pretrained model on Marathi language using a masked language modeling (MLM) objective. RoBERTa wa

Nipun Sadvilkar 23 Oct 19, 2022
SNIPS: Solving Noisy Inverse Problems Stochastically

SNIPS: Solving Noisy Inverse Problems Stochastically This repo contains the official implementation for the paper SNIPS: Solving Noisy Inverse Problem

Bahjat Kawar 35 Nov 09, 2022
Learning and Building Convolutional Neural Networks using PyTorch

Image Classification Using Deep Learning Learning and Building Convolutional Neural Networks using PyTorch. Models, selected are based on number of ci

Mayur 126 Dec 22, 2022
A custom DeepStack model that has been trained detecting ONLY the USPS logo

This repository provides a custom DeepStack model that has been trained detecting ONLY the USPS logo. This was created after I discovered that the Deepstack OpenLogo custom model I was using did not

Stephen Stratoti 9 Dec 27, 2022
Code in PyTorch for the convex combination linear IAF and the Householder Flow, J.M. Tomczak & M. Welling

VAE with Volume-Preserving Flows This is a PyTorch implementation of two volume-preserving flows as described in the following papers: Tomczak, J. M.,

Jakub Tomczak 87 Dec 26, 2022
Shitty gaze mouse controller

demo.mp4 shitty_gaze_mouse_cotroller install tensofflow, cv2 run the main.py and as it starts it will collect data so first raise your left eyebrow(bo

16 Aug 30, 2022