Evaluation and Benchmarking of Speech Super-resolution Methods

Overview

Speech Super-resolution Evaluation and Benchmarking

What this repo do:

  • A toolbox for the evaluation of speech super-resolution algorithms.
  • Unify the evaluation pipline of speech super-resolution algorithms for a easier comparison between different systems.
  • Benchmarking speech super-resolution methods (pull request is welcome). Encouraging reproducible research.

I build this repo while I'm writing my paper for INTERSPEECH 2022: Neural Vocoder is All You Need for Speech Super-resolution. The model mentioned in this paper, NVSR, will also be open-sourced here.

Installation

Install via pip:

pip3 install ssr_eval

Please make sure you have already installed sox.

Quick Example

A basic example: Evaluate on a system that do nothing:

from ssr_eval import test 
test()
  • The evaluation result json file will be stored in the ./results directory: Example file
  • The code will automatically handle stuffs like downloading test sets.
  • You will find a field "averaged" at the bottom of the json file that looks like below. This field mark the performance of the system.
"averaged": {
        "proc_fft_24000_44100": {
            "lsd": 5.152331300436993,
            "log_sispec": 5.8051057146229095,
            "sispec": 30.23394207533686,
            "ssim": 0.8484425044157442
        }
    }

Here we report four metrics:

  1. Log spectral distance(LSD).
  2. Log scale invariant spectral distance [1] (log-sispec).
  3. Scale invariant spectral distance [1] (sispec).
  4. Structral similarity (SSIM).

⚠️ LSD is the most widely used metric for super-resolution. And I include another three metrics just in case you need them.


main_idea

Below is the code of test()

from ssr_eval import SSR_Eval_Helper, BasicTestee

# You need to implement a class for the model to be evaluated.
class MyTestee(BasicTestee):
    def __init__(self) -> None:
        super().__init__()

    # You need to implement this function
    def infer(self, x):
        """A testee that do nothing

        Args:
            x (np.array): [sample,], with model_input_sr sample rate
            target (np.array): [sample,], with model_output_sr sample rate

        Returns:
            np.array: [sample,]
        """
        return x

def test():
    testee = MyTestee()
    # Initialize a evaluation helper
    helper = SSR_Eval_Helper(
        testee,
        test_name="unprocessed",  # Test name for storing the result
        input_sr=44100,  # The sampling rate of the input x in the 'infer' function
        output_sr=44100,  # The sampling rate of the output x in the 'infer' function
        evaluation_sr=48000,  # The sampling rate to calculate evaluation metrics.
        setting_fft={
            "cutoff_freq": [
                12000
            ],  # The cutoff frequency of the input x in the 'infer' function
        },
        save_processed_result=True
    )
    # Perform evaluation
    ## Use all eight speakers in the test set for evaluation (limit_test_speaker=-1) 
    ## Evaluate on 10 utterance for each speaker (limit_test_nums=10)
    helper.evaluate(limit_test_nums=10, limit_test_speaker=-1)

The code will automatically handle stuffs like downloading test sets. The evaluation result will be saved in the ./results directory.

Baselines

We provide several pretrained baselines. For example, to run the NVSR baseline, you can click the link in the following table for more details.


Table.1 Log-spectral distance (LSD) on different input sampling-rate (Evaluated on 44.1kHz).

Method One for all Params 2kHz 4kHz 8kHz 12kHz 16kHz 24kHz 32kHz AVG
NVSR [Pretrained Model] Yes 99.0M 1.04 0.98 0.91 0.85 0.79 0.70 0.60 0.84
WSRGlow(24kHz→48kHz) No 229.9M - - - - - 0.79 - -
WSRGlow(12kHz→48kHz) No 229.9M - - - 0.87 - - - -
WSRGlow(8kHz→48kHz) No 229.9M - - 0.98 - - - - -
WSRGlow(4kHz→48kHz) No 229.9M - 1.12 - - - - - -
Nu-wave(24kHz→48kHz) No 3.0M - - - - - 1.22 - -
Nu-wave(12kHz→48kHz) No 3.0M - - - 1.40 - - - -
Nu-wave(8kHz→48kHz) No 3.0M - - 1.42 - - - - -
Nu-wave(4kHz→48kHz) No 3.0M - 1.42 - - - - - -
Unprocessed - - 5.69 5.50 5.15 4.85 4.54 3.84 2.95 4.65

Click the link of the model for more details.

Here "one for all" means model can process flexible input sampling rate.

Features

The following code demonstrate the full options in the SSR_Eval_Helper:

testee = MyTestee()
helper = SSR_Eval_Helper(testee, # Your testsee object with 'infer' function implemented
                        test_name="unprocess",  # The name of this test. Used for saving the log file in the ./results directory
                        test_data_root="./your_path/vctk_test", # The directory to store the test data, which will be automatically downloaded.
                        input_sr=44100, # The sampling rate of the input x in the 'infer' function
                        output_sr=44100, # The sampling rate of the output x in the 'infer' function
                        evaluation_sr=48000, # The sampling rate to calculate evaluation metrics. 
                        save_processed_result=False, # If True, save model output in the dataset directory.
                        # (Recommend/Default) Use fourier method to simulate low-resolution effect
                        setting_fft = {
                            "cutoff_freq": [1000, 2000, 4000, 6000, 8000, 12000, 16000], # The cutoff frequency of the input x in the 'infer' function
                        }, 
                        # Use lowpass filtering to simulate low-resolution effect. All possible combinations will be evaluated. 
                        setting_lowpass_filtering = {
                            "filter":["cheby","butter","bessel","ellip"], # The type of filter 
                            "cutoff_freq": [1000, 2000, 4000, 6000, 8000, 12000, 16000], 
                            "filter_order": [3,6,9] # Filter orders
                        }, 
                        # Use subsampling method to simulate low-resolution effect
                        setting_subsampling = {
                            "cutoff_freq": [1000, 2000, 4000, 6000, 8000, 12000, 16000],
                        }, 
                        # Use mp3 compression method to simulate low-resolution effect
                        setting_mp3_compression = {
                            "low_kbps": [32, 48, 64, 96, 128],
                        },
)

helper.evaluate(limit_test_nums=10, # For each speaker, only evaluate on 10 utterances.
                limit_test_speaker=-1 # Evaluate on all the speakers. 
                )

⚠️ I recommand all the users to use fourier method (setting_fft) to simulate low-resolution effect for the convinence of comparing between different system.

Dataset Details

We build the test sets using VCTK (version 0.92), a multi-speaker English corpus that contains 110 speakers with different accents.

  • Speakers used for the test set: p360, p361, p362, p363, p364, p374, p376, s5
  • For the remaining 100 speakers, p280 and p315 are omitted for the technical issues.
  • Other 98 speakers are used for training.

Citation

If you find this repo useful for your research, please consider citing:

@misc{liu2022neural,
      title={Neural Vocoder is All You Need for Speech Super-resolution}, 
      author={Haohe Liu and Woosung Choi and Xubo Liu and Qiuqiang Kong and Qiao Tian and DeLiang Wang},
      year={2022},
      eprint={2203.14941},
      archivePrefix={arXiv},
      primaryClass={eess.AS}
}

Reference

[1] Liu, Haohe, et al. "VoiceFixer: Toward General Speech Restoration with Neural Vocoder." arXiv preprint arXiv:2109.13731 (2021).

Owner
Haohe Liu (刘濠赫)
Haohe Liu (刘濠赫)
Sentinel-1 vessel detection model used in the xView3 challenge

sar_vessel_detect Code for the AI2 Skylight team's submission in the xView3 competition (https://iuu.xview.us) for vessel detection in Sentinel-1 SAR

AI2 6 Sep 10, 2022
Backdoor Attack through Frequency Domain

Backdoor Attack through Frequency Domain DEPENDENCIES python==3.8.3 numpy==1.19.4 tensorflow==2.4.0 opencv==4.5.1 idx2numpy==1.2.3 pytorch==1.7.0 Data

5 Jun 18, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
Semantic similarity computation with different state-of-the-art metrics

Semantic similarity computation with different state-of-the-art metrics Description • Installation • Usage • License Description TaxoSS is a semantic

6 Jun 22, 2022
Encode and decode text application

Text Encoder and Decoder Encode and decode text in many ways using this application! Encode in: ASCII85 Base85 Base64 Base32 Base16 Url MD5 Hash SHA-1

Alice 1 Feb 12, 2022
Official pytorch implementation of Rainbow Memory (CVPR 2021)

Rainbow Memory: Continual Learning with a Memory of Diverse Samples

Clova AI Research 91 Dec 17, 2022
Unofficial implementation of Proxy Anchor Loss for Deep Metric Learning

Proxy Anchor Loss for Deep Metric Learning Unofficial pytorch, tensorflow and mxnet implementations of Proxy Anchor Loss for Deep Metric Learning. Not

Geonmo Gu 3 Jun 09, 2021
QA-GNN: Question Answering using Language Models and Knowledge Graphs

QA-GNN: Question Answering using Language Models and Knowledge Graphs This repo provides the source code & data of our paper: QA-GNN: Reasoning with L

Michihiro Yasunaga 434 Jan 04, 2023
Model serving at scale

Run inference at scale Cortex is an open source platform for large-scale machine learning inference workloads. Workloads Realtime APIs - respond to pr

Cortex Labs 7.9k Jan 06, 2023
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
Code to train models from "Paraphrastic Representations at Scale".

Paraphrastic Representations at Scale Code to train models from "Paraphrastic Representations at Scale". The code is written in Python 3.7 and require

John Wieting 71 Dec 19, 2022
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Thank you for you

Weirui Ye 671 Jan 03, 2023
"SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image", Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Humphrey Shi, Zhangyang Wang

SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image [Paper] [Website] Pipeline Code Environment pip install -r requirements

VITA 250 Jan 05, 2023
SimDeblur is a simple framework for image and video deblurring, implemented by PyTorch

SimDeblur (Simple Deblurring) is an open source framework for image and video deblurring toolbox based on PyTorch, which contains most deep-learning based state-of-the-art deblurring algorithms. It i

220 Jan 07, 2023
Riemannian Geometry for Molecular Surface Approximation (RGMolSA)

Riemannian Geometry for Molecular Surface Approximation (RGMolSA) Introduction Ligand-based virtual screening aims to reduce the cost and duration of

11 Nov 15, 2022
Akshat Surolia 2 May 11, 2022
Free course that takes you from zero to Reinforcement Learning PRO 🦸🏻‍🦸🏽

The Hands-on Reinforcement Learning course 🚀 From zero to HERO 🦸🏻‍🦸🏽 Out of intense complexities, intense simplicities emerge. -- Winston Churchi

Pau Labarta Bajo 260 Dec 28, 2022
CLNTM - Contrastive Learning for Neural Topic Model

Contrastive Learning for Neural Topic Model This repository contains the impleme

Thong Thanh Nguyen 25 Nov 24, 2022
Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression.

Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression. Not an official Google product. Me

Google Research 27 Dec 12, 2022
A programming language written with python

Kaoft A programming language written with python How to use A simple Hello World: c="Hello World" c Output: "Hello World" Operators: a=12

1 Jan 24, 2022