[ICLR'21] Counterfactual Generative Networks

Overview

Counterfactual Generative Networks

[Project] [PDF] [Blog] [Music Video] [Colab]

This repository contains the code for the ICLR 2021 paper "Counterfactual Generative Networks" by Axel Sauer and Andreas Geiger. If you want to take the CGN for a spin and generate counterfactual images, you can try out the Colab below.

CGN

If you find our code or paper useful, please cite

@inproceedings{Sauer2021ICLR,
 author =  {Axel Sauer, Andreas Geiger},
 title = {Counterfactual Generative Networks},
 booktitle = {International Conference on Learning Representations (ICLR)},
 year = {2021}}

Setup

Install anaconda (if you don't have it yet)

wget https://repo.anaconda.com/archive/Anaconda3-2020.11-Linux-x86_64.sh
bash Anaconda3-2020.11-Linux-x86_64.sh
source ~/.profile

Clone the repo and build the environment

git clone https://github.com/autonomousvision/counterfactual_generative_networks
cd counterfactual_generative_networks
conda env create -f environment.yml
conda activate cgn

Make all scripts executable: chmod +x scripts/*. Then, download the datasets (colored MNIST, Cue-Conflict, IN-9) and the pre-trained weights (CGN, U2-Net). Comment out the ones you don't need.

./scripts/download_data.sh
./scripts/download_weights.sh

MNISTs

The main functions of this sub-repo are:

  • Generating the MNIST variants
  • Training a CGN
  • Generating counterfactual datasets
  • Training a shape classifier

Train the CGN

We provide well-working configs and weights in mnists/experiments. To train a CGN on, e.g., Wildlife MNIST, run

python mnists/train_cgn.py --cfg mnists/experiments/cgn_wildlife_MNIST/cfg.yaml

For more info, add --help. Weights and samples will be saved in mnists/experiments/.

Generate Counterfactual Data

To generate the counterfactuals for, e.g., double-colored MNIST, run

python mnists/generate_data.py \
--weight_path mnists/experiments/cgn_double_colored_MNIST/weights/ckp.pth \
--dataset double_colored_MNIST --no_cfs 10 --dataset_size 100000

Make sure that you provide the right dataset together with the weights. You can adapt the weight-path to use your own weights. The command above generates ten counterfactuals per shape.

Train the Invariant Classifier

The classifier training uses Tensor datasets, so you need to save the non-counterfactual datasets as tensors. For DATASET = {colored_MNIST, double_colored_MNIST, wildlife_MNIST}, run

python mnists/generate_data.py --dataset DATASET

To train, e.g., a shape classifier (invariant to foreground and background) on wildlife MNIST, run,

python mnists/train_classifier.py --dataset wildlife_MNIST_counterfactual

Add --help for info on the available options and arguments. The hyperparameters are unchanged for all experiments.

ImageNet

The main functions of this sub-repo are:

  • Training a CGN
  • Generating data (samples, interpolations, or a whole dataset)
  • Training an invariant classifier ensemble

Train the CGN

Run

python imagenet/train_cgn.py --model_name MODEL_NAME

The default parameters should give you satisfactory results. You can change them in imagenet/config.yml. For more info, add --help. Weights and samples will be saved in imagenet/data/MODEL_NAME.

Generate Counterfactual Data

Samples. To generate a dataset of counterfactual images, run

python imagenet/generate_data.py --mode random --weights_path imagenet/weights/cgn.pth \
--n_data 100 --weights_path imagenet/weights/cgn.pth --run_name RUN_NAME \
--truncation 0.5 --batch_sz 1

The results will be saved in imagenet/data. For more info, add --help. If you want to save only masks, textures, etc., you need to change this directly in the code (see line 206).

The labels will be stored in a csv file. You can read them as follows:

import pandas as pd
df = pd.read_csv(path, index_col=0)
df = df.set_index('im_name')
shape_cls = df['shape_cls']['RUN_NAME_0000000.png']

Generating a dataset to train a classfier. Produce one dataset with --run_name train, the other one with --run_name val. If you have several GPUs available, you can index the name, e.g., --run_name train_GPU_NUM. The class ImagenetCounterfactual will glob all these datasets and generate a single, big training set. Make sure to set --batch_sz 1. With a larger batch size, a batch will be saved as a single png; this is useful for visualization, not for training.

Interpolations. To generate interpolation sheets, e.g., from a barn (425) to whale (147), run

python imagenet/generate_data.py --mode fixed_classes \
--n_data 1 --weights_path imagenet/weights/cgn.pth --run_name barn_to_whale \
--truncation 0.3 --interp all --classes 425 425 425 --interp_cls 147 --save_noise

You can also do counterfactual interpolations, i.e., interpolating only over, e.g., shape, by setting --interp shape.

Interpolation Gif. To generate a gif like in the teaser (Sample an image of class $1, than interpolate to shape $2, then background $3, then shape $4, and finally back to $1), run

./scripts/generate_teaser_gif.sh 992 293 147 330

The positional arguments are the classes, see imagenet labels for the available options.

Train the Invariant Classifier Ensemble

Training. First, you need to make sure that you have all datasets in imagenet/data/. Download Imagenet, e.g., from Kaggle, produce a counterfactual dataset (see above), and download the Cue-Conflict and BG-Challenge dataset (via the download script in scripts).

To train a classifier on a single GPU with a pre-trained Resnet-50 backbone, run

python imagenet/train_classifier.py -a resnet50 -b 32 --lr 0.001 -j 6 \
--epochs 45 --pretrained --cf_data CF_DATA_PATH --name RUN_NAME

Again, add --help for more information on the possible arguments.

Distributed Training. To switch to multi-GPU training, run echo $CUDA_VISIBLE_DEVICES to see if the GPUs are visible. In the case of a single node with several GPUs, you can run, e.g.,

python imagenet/train_classifier.py -a resnet50 -b 256 --lr 0.001 -j 6 \
--epochs 45 --pretrained --cf_data CF_DATA_PATH --name RUN_NAME \
--rank 0 --multiprocessing-distributed --dist-url tcp://127.0.0.1:8890 --world-size 1

If your setup differs, e.g., several GPU machines, you need to adapt the rank and world size.

Visualization. To visualize the Tensorboard outputs, run tensorboard --logdir=imagenet/runs and open the local address in your browser.

Acknowledgments

We like to acknowledge several repos of which we use parts of code, data, or models in our implementation:

Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.

Pacman AI Jussi Doherty CAP 4601 - Introduction to Artificial Intelligence - Fall 2020 Python version 3.0+ Source of this project This repo contains a

Jussi Doherty 1 Jan 03, 2022
TensorFlow tutorials and best practices.

Effective TensorFlow 2 Table of Contents Part I: TensorFlow 2 Fundamentals TensorFlow 2 Basics Broadcasting the good and the ugly Take advantage of th

Vahid Kazemi 8.7k Dec 31, 2022
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
Evolving neural network parameters in JAX.

Evolving Neural Networks in JAX This repository holds code displaying techniques for applying evolutionary network training strategies in JAX. Each sc

Trevor Thackston 6 Feb 12, 2022
Copy Paste positive polyp using poisson image blending for medical image segmentation

Copy Paste positive polyp using poisson image blending for medical image segmentation According poisson image blending I've completely used it for bio

Phạm Vũ Hùng 2 Oct 19, 2021
This is the official PyTorch implementation of the CVPR 2020 paper "TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting".

TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting Project Page | YouTube | Paper This is the official PyTorch implementation of the C

Zhuoqian Yang 330 Dec 11, 2022
Towards Implicit Text-Guided 3D Shape Generation (CVPR2022)

Towards Implicit Text-Guided 3D Shape Generation Towards Implicit Text-Guided 3D Shape Generation (CVPR2022) Code for the paper [Towards Implicit Text

55 Dec 16, 2022
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
Create images and texts with the First Order Generative Adversarial Networks

First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority

Zalando Research 35 Dec 11, 2021
Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn?

Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn? Repository Structure: DSAN |└───amazon |    └── dataset (Amazo

DMIRLAB 17 Jan 04, 2023
official Pytorch implementation of ICCV 2021 paper FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting.

FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu

77 Dec 27, 2022
HAR-stacked-residual-bidir-LSTMs - Deep stacked residual bidirectional LSTMs for HAR

HAR-stacked-residual-bidir-LSTM The project is based on this repository which is presented as a tutorial. It consists of Human Activity Recognition (H

Guillaume Chevalier 287 Dec 27, 2022
torchsummaryDynamic: support real FLOPs calculation of dynamic network or user-custom PyTorch ops

torchsummaryDynamic Improved tool of torchsummaryX. torchsummaryDynamic support real FLOPs calculation of dynamic network or user-custom PyTorch ops.

Bohong Chen 1 Jan 07, 2022
The story of Chicken for Club Bing

Chicken Story tl;dr: The time when Microsoft banned my entire country for cheating at Club Bing. (A lot of the details are from memory so I've recreat

Eyal 142 May 16, 2022
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 883 Jan 07, 2023
Systemic Evolutionary Chemical Space Exploration for Drug Discovery

SECSE SECSE: Systemic Evolutionary Chemical Space Explorer Chemical space exploration is a major task of the hit-finding process during the pursuit of

64 Dec 16, 2022
[CVPR'21] Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild

IVOS-W Paper Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild Zhaoyun Yin, Jia Zheng, Weixin Luo, Shenhan Qian, Hanli

SVIP Lab 38 Dec 12, 2022
《K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters》(2020)

K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters This repository is the implementation of the paper "K-Adapter: Infusing Knowledge

Microsoft 118 Dec 13, 2022
Dynamical Wasserstein Barycenters for Time Series Modeling

Dynamical Wasserstein Barycenters for Time Series Modeling This is the code related for the Dynamical Wasserstein Barycenter model published in Neurip

8 Sep 09, 2022
SymPy-powered, Wolfram|Alpha-like answer engine totally in your browser, without backend computation

SymPy Beta SymPy Beta is a fork of SymPy Gamma. The purpose of this project is to run a SymPy-powered, Wolfram|Alpha-like answer engine totally in you

Liumeo 25 Dec 21, 2022