Keras implementations of Generative Adversarial Networks.

Overview

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as a collaborator send me an email at [email protected].

Keras-GAN

Collection of Keras implementations of Generative Adversarial Networks (GANs) suggested in research papers. These models are in some cases simplified versions of the ones ultimately described in the papers, but I have chosen to focus on getting the core ideas covered instead of getting every layer configuration right. Contributions and suggestions of GAN varieties to implement are very welcomed.

See also: PyTorch-GAN

Table of Contents

Installation

$ git clone https://github.com/eriklindernoren/Keras-GAN
$ cd Keras-GAN/
$ sudo pip3 install -r requirements.txt

Implementations

AC-GAN

Implementation of Auxiliary Classifier Generative Adversarial Network.

Code

Paper: https://arxiv.org/abs/1610.09585

Example

$ cd acgan/
$ python3 acgan.py

Adversarial Autoencoder

Implementation of Adversarial Autoencoder.

Code

Paper: https://arxiv.org/abs/1511.05644

Example

$ cd aae/
$ python3 aae.py

BiGAN

Implementation of Bidirectional Generative Adversarial Network.

Code

Paper: https://arxiv.org/abs/1605.09782

Example

$ cd bigan/
$ python3 bigan.py

BGAN

Implementation of Boundary-Seeking Generative Adversarial Networks.

Code

Paper: https://arxiv.org/abs/1702.08431

Example

$ cd bgan/
$ python3 bgan.py

CC-GAN

Implementation of Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks.

Code

Paper: https://arxiv.org/abs/1611.06430

Example

$ cd ccgan/
$ python3 ccgan.py

CGAN

Implementation of Conditional Generative Adversarial Nets.

Code

Paper:https://arxiv.org/abs/1411.1784

Example

$ cd cgan/
$ python3 cgan.py

Context Encoder

Implementation of Context Encoders: Feature Learning by Inpainting.

Code

Paper: https://arxiv.org/abs/1604.07379

Example

$ cd context_encoder/
$ python3 context_encoder.py

CoGAN

Implementation of Coupled generative adversarial networks.

Code

Paper: https://arxiv.org/abs/1606.07536

Example

$ cd cogan/
$ python3 cogan.py

CycleGAN

Implementation of Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks.

Code

Paper: https://arxiv.org/abs/1703.10593

Example

$ cd cyclegan/
$ bash download_dataset.sh apple2orange
$ python3 cyclegan.py

DCGAN

Implementation of Deep Convolutional Generative Adversarial Network.

Code

Paper: https://arxiv.org/abs/1511.06434

Example

$ cd dcgan/
$ python3 dcgan.py

DiscoGAN

Implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks.

Code

Paper: https://arxiv.org/abs/1703.05192

Example

$ cd discogan/
$ bash download_dataset.sh edges2shoes
$ python3 discogan.py

DualGAN

Implementation of DualGAN: Unsupervised Dual Learning for Image-to-Image Translation.

Code

Paper: https://arxiv.org/abs/1704.02510

Example

$ cd dualgan/
$ python3 dualgan.py

GAN

Implementation of Generative Adversarial Network with a MLP generator and discriminator.

Code

Paper: https://arxiv.org/abs/1406.2661

Example

$ cd gan/
$ python3 gan.py

InfoGAN

Implementation of InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets.

Code

Paper: https://arxiv.org/abs/1606.03657

Example

$ cd infogan/
$ python3 infogan.py

LSGAN

Implementation of Least Squares Generative Adversarial Networks.

Code

Paper: https://arxiv.org/abs/1611.04076

Example

$ cd lsgan/
$ python3 lsgan.py

Pix2Pix

Implementation of Image-to-Image Translation with Conditional Adversarial Networks.

Code

Paper: https://arxiv.org/abs/1611.07004

Example

$ cd pix2pix/
$ bash download_dataset.sh facades
$ python3 pix2pix.py

PixelDA

Implementation of Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks.

Code

Paper: https://arxiv.org/abs/1612.05424

MNIST to MNIST-M Classification

Trains a classifier on MNIST images that are translated to resemble MNIST-M (by performing unsupervised image-to-image domain adaptation). This model is compared to the naive solution of training a classifier on MNIST and evaluating it on MNIST-M. The naive model manages a 55% classification accuracy on MNIST-M while the one trained during domain adaptation gets a 95% classification accuracy.

$ cd pixelda/
$ python3 pixelda.py
Method Accuracy
Naive 55%
PixelDA 95%

SGAN

Implementation of Semi-Supervised Generative Adversarial Network.

Code

Paper: https://arxiv.org/abs/1606.01583

Example

$ cd sgan/
$ python3 sgan.py

SRGAN

Implementation of Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network.

Code

Paper: https://arxiv.org/abs/1609.04802

Example

$ cd srgan/
<follow steps at the top of srgan.py>
$ python3 srgan.py

WGAN

Implementation of Wasserstein GAN (with DCGAN generator and discriminator).

Code

Paper: https://arxiv.org/abs/1701.07875

Example

$ cd wgan/
$ python3 wgan.py

WGAN GP

Implementation of Improved Training of Wasserstein GANs.

Code

Paper: https://arxiv.org/abs/1704.00028

Example

$ cd wgan_gp/
$ python3 wgan_gp.py

Owner
Erik Linder-Norén
ML engineer at Apple. Excited about machine learning, basketball and building things.
Erik Linder-Norén
A Python script that creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editing software such as FinalCut Pro for further adjustments.

Text to Subtitles - Python This python file creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editin

Dmytro North 9 Dec 24, 2022
Code release for the ICML 2021 paper "PixelTransformer: Sample Conditioned Signal Generation".

PixelTransformer Code release for the ICML 2021 paper "PixelTransformer: Sample Conditioned Signal Generation". Project Page Installation Please insta

Shubham Tulsiani 24 Dec 17, 2022
Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch

Enformer - Pytorch (wip) Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch. The original tensorflow

Phil Wang 235 Dec 27, 2022
This repository is for the preprint "A generative nonparametric Bayesian model for whole genomes"

BEAR Overview This repository contains code associated with the preprint A generative nonparametric Bayesian model for whole genomes (2021), which pro

Debora Marks Lab 10 Sep 18, 2022
Pytorch reimplementation of the Mixer (MLP-Mixer: An all-MLP Architecture for Vision)

MLP-Mixer Pytorch reimplementation of Google's repository for the MLP-Mixer (Not yet updated on the master branch) that was released with the paper ML

Eunkwang Jeon 18 Dec 08, 2022
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which outperforms the paper's (Hessel et al. 2017) results on 40% of tested games while using 20x less dat

Dominik Schmidt 31 Dec 21, 2022
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and shape estimation at the university of Lincoln

PhD_3DPerception Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and s

lelouedec 2 Oct 06, 2022
This repository for project that can Automate Number Plate Recognition (ANPR) in Morocco Licensed Vehicles. 💻 + 🚙 + 🇲🇦 = 🤖 🕵🏻‍♂️

MoroccoAI Data Challenge (Edition #001) This Reposotory is result of our work in the comepetiton organized by MoroccoAI in the context of the first Mo

SAFOINE EL KHABICH 14 Oct 31, 2022
When in Doubt: Improving Classification Performance with Alternating Normalization

When in Doubt: Improving Classification Performance with Alternating Normalization Findings of EMNLP 2021 Menglin Jia, Austin Reiter, Ser-Nam Lim, Yoa

Menglin Jia 13 Nov 06, 2022
Opinionated code formatter, just like Python's black code formatter but for Beancount

beancount-black Opinionated code formatter, just like Python's black code formatter but for Beancount Try it out online here Features MIT licensed - b

Launch Platform 16 Oct 11, 2022
PyTorch module to use OpenFace's nn4.small2.v1.t7 model

OpenFace for Pytorch Disclaimer: This codes require the input face-images that are aligned and cropped in the same way of the original OpenFace. * I m

Pete Tae-hoon Kim 176 Dec 12, 2022
Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)

Introduction Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper Song Park1

Clova AI Research 97 Dec 23, 2022
Internship Assessment Task for BaggageAI.

BaggageAI Internship Task Problem Statement: You are given two sets of images:- background and threat objects. Background images are the background x-

Arya Shah 10 Nov 14, 2022
This project helps to colorize grayscale images using multiple exemplars.

Multiple Exemplar-based Deep Colorization (Pytorch Implementation) Pretrained Model [Jitendra Chautharia](IIT Jodhpur)1,3, Prerequisites Python 3.6+ N

jitendra chautharia 3 Aug 05, 2022
A rule-based log analyzer & filter

Flog 一个根据规则集来处理文本日志的工具。 前言 在日常开发过程中,由于缺乏必要的日志规范,导致很多人乱打一通,一个日志文件夹解压缩后往往有几十万行。 日志泛滥会导致信息密度骤减,给排查问题带来了不小的麻烦。 以前都是用grep之类的工具先挑选出有用的,再逐条进行排查,费时费力。在忍无可忍之后决

上山打老虎 9 Jun 23, 2022
Implementation of Kronecker Attention in Pytorch

Kronecker Attention Pytorch Implementation of Kronecker Attention in Pytorch. Results look less than stellar, but if someone found some context where

Phil Wang 16 May 06, 2022
This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021.

SG2HOI This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021. Installation Pytorch 1.7

HT 10 Dec 20, 2022
A modular framework for vision & language multimodal research from Facebook AI Research (FAIR)

MMF is a modular framework for vision and language multimodal research from Facebook AI Research. MMF contains reference implementations of state-of-t

Facebook Research 5.1k Jan 04, 2023
基于AlphaPose的TensorRT加速

1. Requirements CUDA 11.1 TensorRT 7.2.2 Python 3.8.5 Cython PyTorch 1.8.1 torchvision 0.9.1 numpy 1.17.4 (numpy版本过高会出报错 this issue ) python-package s

52 Dec 06, 2022