Keras implementations of Generative Adversarial Networks.

Overview

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as a collaborator send me an email at [email protected].

Keras-GAN

Collection of Keras implementations of Generative Adversarial Networks (GANs) suggested in research papers. These models are in some cases simplified versions of the ones ultimately described in the papers, but I have chosen to focus on getting the core ideas covered instead of getting every layer configuration right. Contributions and suggestions of GAN varieties to implement are very welcomed.

See also: PyTorch-GAN

Table of Contents

Installation

$ git clone https://github.com/eriklindernoren/Keras-GAN
$ cd Keras-GAN/
$ sudo pip3 install -r requirements.txt

Implementations

AC-GAN

Implementation of Auxiliary Classifier Generative Adversarial Network.

Code

Paper: https://arxiv.org/abs/1610.09585

Example

$ cd acgan/
$ python3 acgan.py

Adversarial Autoencoder

Implementation of Adversarial Autoencoder.

Code

Paper: https://arxiv.org/abs/1511.05644

Example

$ cd aae/
$ python3 aae.py

BiGAN

Implementation of Bidirectional Generative Adversarial Network.

Code

Paper: https://arxiv.org/abs/1605.09782

Example

$ cd bigan/
$ python3 bigan.py

BGAN

Implementation of Boundary-Seeking Generative Adversarial Networks.

Code

Paper: https://arxiv.org/abs/1702.08431

Example

$ cd bgan/
$ python3 bgan.py

CC-GAN

Implementation of Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks.

Code

Paper: https://arxiv.org/abs/1611.06430

Example

$ cd ccgan/
$ python3 ccgan.py

CGAN

Implementation of Conditional Generative Adversarial Nets.

Code

Paper:https://arxiv.org/abs/1411.1784

Example

$ cd cgan/
$ python3 cgan.py

Context Encoder

Implementation of Context Encoders: Feature Learning by Inpainting.

Code

Paper: https://arxiv.org/abs/1604.07379

Example

$ cd context_encoder/
$ python3 context_encoder.py

CoGAN

Implementation of Coupled generative adversarial networks.

Code

Paper: https://arxiv.org/abs/1606.07536

Example

$ cd cogan/
$ python3 cogan.py

CycleGAN

Implementation of Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks.

Code

Paper: https://arxiv.org/abs/1703.10593

Example

$ cd cyclegan/
$ bash download_dataset.sh apple2orange
$ python3 cyclegan.py

DCGAN

Implementation of Deep Convolutional Generative Adversarial Network.

Code

Paper: https://arxiv.org/abs/1511.06434

Example

$ cd dcgan/
$ python3 dcgan.py

DiscoGAN

Implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks.

Code

Paper: https://arxiv.org/abs/1703.05192

Example

$ cd discogan/
$ bash download_dataset.sh edges2shoes
$ python3 discogan.py

DualGAN

Implementation of DualGAN: Unsupervised Dual Learning for Image-to-Image Translation.

Code

Paper: https://arxiv.org/abs/1704.02510

Example

$ cd dualgan/
$ python3 dualgan.py

GAN

Implementation of Generative Adversarial Network with a MLP generator and discriminator.

Code

Paper: https://arxiv.org/abs/1406.2661

Example

$ cd gan/
$ python3 gan.py

InfoGAN

Implementation of InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets.

Code

Paper: https://arxiv.org/abs/1606.03657

Example

$ cd infogan/
$ python3 infogan.py

LSGAN

Implementation of Least Squares Generative Adversarial Networks.

Code

Paper: https://arxiv.org/abs/1611.04076

Example

$ cd lsgan/
$ python3 lsgan.py

Pix2Pix

Implementation of Image-to-Image Translation with Conditional Adversarial Networks.

Code

Paper: https://arxiv.org/abs/1611.07004

Example

$ cd pix2pix/
$ bash download_dataset.sh facades
$ python3 pix2pix.py

PixelDA

Implementation of Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks.

Code

Paper: https://arxiv.org/abs/1612.05424

MNIST to MNIST-M Classification

Trains a classifier on MNIST images that are translated to resemble MNIST-M (by performing unsupervised image-to-image domain adaptation). This model is compared to the naive solution of training a classifier on MNIST and evaluating it on MNIST-M. The naive model manages a 55% classification accuracy on MNIST-M while the one trained during domain adaptation gets a 95% classification accuracy.

$ cd pixelda/
$ python3 pixelda.py
Method Accuracy
Naive 55%
PixelDA 95%

SGAN

Implementation of Semi-Supervised Generative Adversarial Network.

Code

Paper: https://arxiv.org/abs/1606.01583

Example

$ cd sgan/
$ python3 sgan.py

SRGAN

Implementation of Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network.

Code

Paper: https://arxiv.org/abs/1609.04802

Example

$ cd srgan/
<follow steps at the top of srgan.py>
$ python3 srgan.py

WGAN

Implementation of Wasserstein GAN (with DCGAN generator and discriminator).

Code

Paper: https://arxiv.org/abs/1701.07875

Example

$ cd wgan/
$ python3 wgan.py

WGAN GP

Implementation of Improved Training of Wasserstein GANs.

Code

Paper: https://arxiv.org/abs/1704.00028

Example

$ cd wgan_gp/
$ python3 wgan_gp.py

Owner
Erik Linder-Norén
ML engineer at Apple. Excited about machine learning, basketball and building things.
Erik Linder-Norén
The datasets and code of ACL 2021 paper "Aspect-Category-Opinion-Sentiment Quadruple Extraction with Implicit Aspects and Opinions".

Aspect-Category-Opinion-Sentiment (ACOS) Quadruple Extraction This repo contains the data sets and source code of our paper: Aspect-Category-Opinion-S

NUSTM 144 Jan 02, 2023
Exploiting a Zoo of Checkpoints for Unseen Tasks

Exploiting a Zoo of Checkpoints for Unseen Tasks This repo includes code to reproduce all results in the above Neurips paper, authored by Jiaji Huang,

Baidu Research 8 Sep 06, 2022
Deep Q Learning with OpenAI Gym and Pokemon Showdown

pokemon-deep-learning An openAI gym project for pokemon involving deep q learning. Made by myself, Sam Little, and Layton Webber. This code captures g

2 Dec 22, 2021
Spatial-Temporal Transformer for Dynamic Scene Graph Generation, ICCV2021

Spatial-Temporal Transformer for Dynamic Scene Graph Generation Pytorch Implementation of our paper Spatial-Temporal Transformer for Dynamic Scene Gra

Yuren Cong 119 Jan 01, 2023
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 360 Dec 10, 2022
Gym environment for FLIPIT: The Game of "Stealthy Takeover"

gym-flipit Gym environment for FLIPIT: The Game of "Stealthy Takeover" invented by Marten van Dijk, Ari Juels, Alina Oprea, and Ronald L. Rivest. Desi

Lisa Oakley 2 Dec 15, 2021
Pyramid Pooling Transformer for Scene Understanding

Pyramid Pooling Transformer for Scene Understanding Requirements: torch 1.6+ torchvision 0.7.0 timm==0.3.2 Validated on torch 1.6.0, torchvision 0.7.0

Yu-Huan Wu 119 Dec 29, 2022
nfelo: a power ranking, prediction, and betting model for the NFL

nfelo nfelo is a power ranking, prediction, and betting model for the NFL. Nfelo take's 538's Elo framework and further adapts it for the NFL, hence t

6 Nov 22, 2022
🏖 Keras Implementation of Painting outside the box

Keras implementation of Image OutPainting This is an implementation of Painting Outside the Box: Image Outpainting paper from Standford University. So

Bendang 1.1k Dec 10, 2022
PyDeepFakeDet is an integrated and scalable tool for Deepfake detection.

PyDeepFakeDet An integrated and scalable library for Deepfake detection research. Introduction PyDeepFakeDet is an integrated and scalable Deepfake de

Junke, Wang 49 Dec 11, 2022
The-Secret-Sharing-Schemes - This interactive script demonstrates the Secret Sharing Schemes algorithm

The-Secret-Sharing-Schemes This interactive script demonstrates the Secret Shari

Nishaant Goswamy 1 Jan 02, 2022
unofficial pytorch implementation of RefineGAN

RefineGAN unofficial pytorch implementation of RefineGAN (https://arxiv.org/abs/1709.00753) for CSMRI reconstruction, the official code using tensorpa

xinby17 5 Jul 21, 2022
(CVPR 2022) Energy-based Latent Aligner for Incremental Learning

Energy-based Latent Aligner for Incremental Learning Accepted to CVPR 2022 We illustrate an Incremental Learning model trained on a continuum of tasks

Joseph K J 37 Jan 03, 2023
DeiT: Data-efficient Image Transformers

DeiT: Data-efficient Image Transformers This repository contains PyTorch evaluation code, training code and pretrained models for DeiT (Data-Efficient

Facebook Research 3.2k Jan 06, 2023
Train neural network for semantic segmentation (deep lab V3) with pytorch in less then 50 lines of code

Train neural network for semantic segmentation (deep lab V3) with pytorch in 50 lines of code Train net semantic segmentation net using Trans10K datas

17 Dec 19, 2022
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance [Video Demo] [Paper] Installation Requirements Python 3.6 PyTorch 1.1.0 Pleas

Jiachen Xu 19 Oct 28, 2022
CellRank's reproducibility repository.

CellRank's reproducibility repository We believe that reproducibility is key and have made it as simple as possible to reproduce our results. Please e

Theis Lab 8 Oct 08, 2022
Official repository for: Continuous Control With Ensemble DeepDeterministic Policy Gradients

Continuous Control With Ensemble Deep Deterministic Policy Gradients This repository is the official implementation of Continuous Control With Ensembl

4 Dec 06, 2021