Domain Generalization with MixStyle, ICLR'21.

Overview

MixStyle

This repo contains the code of our ICLR'21 paper, "Domain Generalization with MixStyle".

The OpenReview link is https://openreview.net/forum?id=6xHJ37MVxxp.

########## Updates ############

12-04-2021: A variable self._activated is added to MixStyle to better control the computational flow. To deactivate MixStyle without modifying the model code, one can do

def deactivate_mixstyle(m):
    if type(m) == MixStyle:
        m.set_activation_status(False)

model.apply(deactivate_mixstyle)

Similarly, to activate MixStyle, one can do

def activate_mixstyle(m):
    if type(m) == MixStyle:
        m.set_activation_status(True)

model.apply(activate_mixstyle)

Note that MixStyle has been included in Dassl.pytorch. See the code for details.

05-03-2021: You might also be interested in our recently released survey on domain generalization at https://arxiv.org/abs/2103.02503, which summarizes the ten-year development in domain generalization, with coverage on the history, datasets, related problems, methodologies, potential directions, and so on.

##############################

A brief introduction: The key idea of MixStyle is to probablistically mix instance-level feature statistics of training samples across source domains. MixStyle improves model robustness to domain shift by implicitly synthesizing new domains at the feature level for regularizing the training of convolutional neural networks. This idea is largely inspired by neural style transfer which has shown that feature statistics are closely related to image style and therefore arbitrary image style transfer can be achieved by switching the feature statistics between a content and a style image.

MixStyle is very easy to implement. Below we show the PyTorch code of MixStyle.

import random
import torch
import torch.nn as nn


class MixStyle(nn.Module):
    """MixStyle.

    Reference:
      Zhou et al. Domain Generalization with MixStyle. ICLR 2021.
    """

    def __init__(self, p=0.5, alpha=0.1, eps=1e-6):
        """
        Args:
          p (float): probability of using MixStyle.
          alpha (float): parameter of the Beta distribution.
          eps (float): scaling parameter to avoid numerical issues.
        """
        super().__init__()
        self.p = p
        self.beta = torch.distributions.Beta(alpha, alpha)
        self.eps = eps
        self.alpha = alpha

        self._activated = True

    def __repr__(self):
        return f'MixStyle(p={self.p}, alpha={self.alpha}, eps={self.eps})'

    def set_activation_status(self, status=True):
        self._activated = status

    def forward(self, x):
        if not self.training or not self._activated:
            return x

        if random.random() > self.p:
            return x

        B = x.size(0)

        mu = x.mean(dim=[2, 3], keepdim=True)
        var = x.var(dim=[2, 3], keepdim=True)
        sig = (var + self.eps).sqrt()
        mu, sig = mu.detach(), sig.detach()
        x_normed = (x-mu) / sig

        lmda = self.beta.sample((B, 1, 1, 1))
        lmda = lmda.to(x.device)

        perm = torch.randperm(B)
        mu2, sig2 = mu[perm], sig[perm]
        mu_mix = mu*lmda + mu2 * (1-lmda)
        sig_mix = sig*lmda + sig2 * (1-lmda)

        return x_normed*sig_mix + mu_mix

How to apply MixStyle to your CNN models? Say you are using ResNet as the CNN architecture, and want to apply MixStyle after the 1st and 2nd residual blocks, you can first instantiate the MixStyle module using

self.mixstyle = MixStyle(p=0.5, alpha=0.1)

during network construction (in __init__()), and then apply MixStyle in the forward pass like

def forward(self, x):
    x = self.conv1(x) # 1st convolution layer
    x = self.res1(x) # 1st residual block
    x = self.mixstyle(x)
    x = self.res2(x) # 2nd residual block
    x = self.mixstyle(x)
    x = self.res3(x) # 3rd residual block
    x = self.res4(x) # 4th residual block
    ...

In our paper, we have demonstrated the effectiveness of MixStyle on three tasks: image classification, person re-identification, and reinforcement learning. The source code for reproducing all experiments can be found in mixstyle-release/imcls, mixstyle-release/reid, and mixstyle-release/rl, respectively.

Takeaways on applying MixStyle to your tasks:

  • Applying MixStyle to multiple lower layers is generally better
  • Do not apply MixStyle to the last layer that is the closest to the prediction layer
  • Different tasks might favor different combinations

For more analytical studies, please read our paper at https://openreview.net/forum?id=6xHJ37MVxxp.

To cite MixStyle in your publications, please use the following bibtex entry

@inproceedings{zhou2021mixstyle,
  title={Domain Generalization with MixStyle},
  author={Zhou, Kaiyang and Yang, Yongxin and Qiao, Yu and Xiang, Tao},
  booktitle={ICLR},
  year={2021}
}
Owner
Kaiyang
Researcher in computer vision and machine learning :)
Kaiyang
patchmatch和patchmatchstereo算法的python实现

patchmatch patchmatch以及patchmatchstereo算法的python版实现 patchmatch参考 github patchmatchstereo参考李迎松博士的c++版代码 由于patchmatchstereo没有做任何优化,并且是python的代码,主要是方便解析算

Sanders Bao 11 Dec 02, 2022
Pytorch implementation of our paper under review -- 1xN Pattern for Pruning Convolutional Neural Networks

1xN Pattern for Pruning Convolutional Neural Networks (paper) . This is Pytorch re-implementation of "1xN Pattern for Pruning Convolutional Neural Net

Mingbao Lin (林明宝) 29 Nov 29, 2022
Defending graph neural networks against adversarial attacks (NeurIPS 2020)

GNNGuard: Defending Graph Neural Networks against Adversarial Attacks Authors: Xiang Zhang ( Zitnik Lab @ Harvard 44 Dec 07, 2022

Annotated, understandable, and visually interpretable PyTorch implementations of: VAE, BIRVAE, NSGAN, MMGAN, WGAN, WGANGP, LSGAN, DRAGAN, BEGAN, RaGAN, InfoGAN, fGAN, FisherGAN

Overview PyTorch 0.4.1 | Python 3.6.5 Annotated implementations with comparative introductions for minimax, non-saturating, wasserstein, wasserstein g

Shayne O'Brien 471 Dec 16, 2022
The Empirical Investigation of Representation Learning for Imitation (EIRLI)

The Empirical Investigation of Representation Learning for Imitation (EIRLI)

Center for Human-Compatible AI 31 Nov 06, 2022
Only works with the dashboard version / branch of jesse

Jesse optuna Only works with the dashboard version / branch of jesse. The config.yml should be self-explainatory. Installation # install from git pip

Markus K. 8 Dec 04, 2022
A PyTorch re-implementation of the paper 'Exploring Simple Siamese Representation Learning'. Reproduced the 67.8% Top1 Acc on ImageNet.

Exploring simple siamese representation learning This is a PyTorch re-implementation of the SimSiam paper on ImageNet dataset. The results match that

Taojiannan Yang 72 Nov 09, 2022
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

Robotics and Autonomous Systems Group 96 Dec 15, 2022
InvTorch: memory-efficient models with invertible functions

InvTorch: Memory-Efficient Invertible Functions This module extends the functionality of torch.utils.checkpoint.checkpoint to work with invertible fun

Modar M. Alfadly 12 May 12, 2022
SciKit-Learn Laboratory (SKLL) makes it easy to run machine learning experiments.

SciKit-Learn Laboratory This Python package provides command-line utilities to make it easier to run machine learning experiments with scikit-learn. O

ETS 528 Nov 25, 2022
A simple Tensorflow based library for deep and/or denoising AutoEncoder.

libsdae - deep-Autoencoder & denoising autoencoder A simple Tensorflow based library for Deep autoencoder and denoising AE. Library follows sklearn st

Rajarshee Mitra 147 Nov 18, 2022
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 865 Nov 17, 2022
Code for "Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance" at NeurIPS 2021

Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance Justin Lim, Christina X Ji, Michael Oberst, Saul Blecker, Leor

Sontag Lab 3 Feb 03, 2022
Code for T-Few from "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning"

T-Few This repository contains the official code for the paper: "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learni

220 Dec 31, 2022
Code for ICML 2021 paper: How could Neural Networks understand Programs?

OSCAR This repository contains the source code of our ICML 2021 paper How could Neural Networks understand Programs?. Environment Run following comman

Dinglan Peng 115 Dec 17, 2022
Fast, accurate and reliable software for algebraic CT reconstruction

KCT CBCT Fast, accurate and reliable software for algebraic CT reconstruction. This set of software tools includes OpenCL implementation of modern CT

Vojtěch Kulvait 4 Dec 14, 2022
Framework for joint representation learning, evaluation through multimodal registration and comparison with image translation based approaches

CoMIR: Contrastive Multimodal Image Representation for Registration Framework 🖼 Registration of images in different modalities with Deep Learning 🤖

Methods for Image Data Analysis - MIDA 55 Dec 09, 2022
Causal Influence Detection for Improving Efficiency in Reinforcement Learning

Causal Influence Detection for Improving Efficiency in Reinforcement Learning This repository contains the code release for the paper "Causal Influenc

Autonomous Learning Group 21 Nov 29, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.

Self-attention building blocks for computer vision applications in PyTorch Implementation of self attention mechanisms for computer vision in PyTorch

AI Summer 962 Dec 23, 2022