🔪 Elimination based Lightweight Neural Net with Pretrained Weights

Overview

ELimNet

ELimNet: Eliminating Layers in a Neural Network Pretrained with Large Dataset for Downstream Task

  • Removed top layers from pretrained EfficientNetB0 and ResNet18 to construct lightweight CNN model with less than 1M #params.
  • Assessed on Trash Annotations in Context(TACO) Dataset sampled for 6 classes with 20,851 images.
  • Compared performance with lightweight models generated with Optuna's Neural Architecture Search(NAS) constituted with same convolutional blocks.

Quickstart

Installation

# clone the repository
git clone https://github.com/snoop2head/elimnet

# fetch image dataset and unzip
!wget -cq https://aistages-prod-server-public.s3.amazonaws.com/app/Competitions/000081/data/data.zip
!unzip ./data.zip -d ./

Train

# finetune on the dataset with pretrained model
python train.py --model ./model/efficientnet_b0.yaml

# finetune on the dataset with ElimNet
python train.py --model ./model/efficientnet_b0_elim_3.yaml

Inference

# inference with the lastest ran model
python inference.py --model_dir ./exp/latest/

Performance

Performance is compared with (1) original pretrained model and (2) Optuna NAS constructed models with no pretrained weights.

  • Indicates that top convolutional layers eliminated pretrained CNN models outperforms empty Optuna NAS models generated with same convolutional blocks.
  • Suggests that eliminating top convolutional layers creates lightweight model that shows similar(or better) classifcation performance with original pretrained model.
  • Reduces parameters to 7%(or less) of its original parameters while maintaining(or improving) its performance. Saves inference time by 20% or more by eliminating top convolutional layters.

ELimNet vs Pretrained Models (Train)

[100 epochs] # of Parameters # of Layers Train Validation Test F1
Pretrained EfficientNet B0 4.0M 352 Loss: 0.43
Acc: 81.23%
F1: 0.84
Loss: 0.469
Acc: 82.17%
F1: 0.76
0.7493
EfficientNet B0 Elim 2 0.9M 245 Loss:0.652
Acc: 87.22%
F1: 0.84
Loss: 0.622
Acc: 87.22%
F1: 0.77
0.7603
EfficientNet B0 Elim 3 0.30M 181 Loss: 0.602
Acc: 78.17%
F1: 0.74
Loss: 0.661
Acc: 77.41%
F1: 0.74
0.7349
Resnet18 11.17M 69 Loss: 0.578
Acc: 78.90%
F1: 0.76
Loss: 0.700
Acc: 76.17%
F1: 0.719
-
Resnet18 Elim 2 0.68M 37 Loss: 0.447
Acc: 83.73%
F1: 0.71
Loss: 0.712
Acc: 75.42%
F1: 0.71
-

ELimNet vs Pretrained Models (Inference)

# of Parameters # of Layers CPU times (sec) CUDA time (sec) Test Inference Time (sec)
Pretrained EfficientNet B0 4.0M 352 3.9s 4.0s 105.7s
EfficientNet B0 Elim 2 0.9M 245 4.1s 13.0s 83.4s
EfficientNet B0 Elim 3 0.30M 181 3.0s 9.0s 73.5s
Resnet18 11.17M 69 - - -
Resnet18 Elim 2 0.68M 37 - - -

ELimNet vs Empty Optuna NAS Models (Train)

[100 epochs] # of Parameters # of Layers Train Valid Test F1
Empty MobileNet V3 4.2M 227 Loss 0.925
Acc: 65.18%
F1: 0.58
Loss 0.993
Acc: 62.83%
F1: 0.56
-
Empty EfficientNet B0 1.3M 352 Loss 0.867
Acc: 67.28%
F1: 0.61
Loss 0.898
Acc: 66.80%
F1: 0.61
0.6337
Empty DWConv & InvertedResidualv3 NAS 0.08M 66 - Loss: 0.766
Acc: 71.71%
F1: 0.68
0.6740
Empty MBConv NAS 0.33M 141 Loss: 0.786
Acc: 70.72%
F1: 0.66
Loss: 0.866
Acc: 68.09%
F1: 0.62
0.6245
Resnet18 Elim 2 0.68M 37 Loss: 0.447
Acc: 83.73%
F1: 0.71
Loss: 0.712
Acc: 75.42%
F1: 0.71
-
EfficientNet B0 Elim 3 0.30M 181 Loss: 0.602
Acc: 78.17%
F1: 0.74
Loss: 0.661
Acc: 77.41%
F1: 0.74
0.7603

ELimNet vs Empty Optuna NAS Models (Inference)

# of Parameters # of Layers CPU times (sec) CUDA time (sec) Test Inference Time (sec)
Empty MobileNet V3 4.2M 227 4 13 -
Empty EfficientNet B0 1.3M 352 3.780 3.782 68.4s
Empty DWConv &
InvertedResidualv3 NAS
0.08M 66 1 3.5 61.1s
Empty MBConv NAS 0.33M 141 2.14 7.201 67.1s
Resnet18 Elim 2 0.68M 37 - - -
EfficientNet B0 Elim 3 0.30M 181 3.0s 9s 73.5s

Background & WiP

Background

Work in Progress

  • Will test the performance of replacing convolutional blocks with pretrained weights with a single convolutional layer without pretrained weights.
  • Will add ResNet18's inference time data and compare with Optuna's NAS constructed lightweight model.
  • Will test on pretrained MobileNetV3, MnasNet on torchvision with elimination based lightweight model architecture search.
  • Will be applied on other small datasets such as Fashion MNIST dataset and Plant Village dataset.

Others

  • "Empty" stands for model with no pretrained weights.
  • "EfficientNet B0 Elim 2" means 2 convolutional blocks have been eliminated from pretrained EfficientNet B0. Number next to "Elim" annotates how many convolutional blocks have been removed.
  • Table's performance illustrates best performance out of 100 epochs of finetuning on TACO Dataset.

Authors

Owner
snoop2head
break, compose, display
snoop2head
Binary Passage Retriever (BPR) - an efficient passage retriever for open-domain question answering

BPR Binary Passage Retriever (BPR) is an efficient neural retrieval model for open-domain question answering. BPR integrates a learning-to-hash techni

Studio Ousia 147 Dec 07, 2022
Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz).

Blender-Cave-Generation Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz). Installation

2 Dec 28, 2022
The code of Zero-shot learning for low-light image enhancement based on dual iteration

Zero-shot-dual-iter-LLE The code of Zero-shot learning for low-light image enhancement based on dual iteration. You can get the real night image tests

1 Mar 18, 2022
KwaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%)

KuaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%) KuaiRec is a real-world dataset collected from the recommendation log

Chongming GAO (高崇铭) 70 Dec 28, 2022
A small fun project using python OpenCV, mediapipe, and pydirectinput

Here I tried a small fun project using python OpenCV, mediapipe, and pydirectinput. Here we can control moves car game when yellow color come to right box (press key 'd') left box (press key 'a') lef

Sameh Elisha 3 Nov 17, 2022
SAT: 2D Semantics Assisted Training for 3D Visual Grounding, ICCV 2021 (Oral)

SAT: 2D Semantics Assisted Training for 3D Visual Grounding SAT: 2D Semantics Assisted Training for 3D Visual Grounding by Zhengyuan Yang, Songyang Zh

Zhengyuan Yang 22 Nov 30, 2022
Random Forests for Regression with Missing Entries

Random Forests for Regression with Missing Entries These are specific codes used in the article: On the Consistency of a Random Forest Algorithm in th

Irving Gómez-Méndez 1 Nov 15, 2021
RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020)

RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020) Hong Wang, Qi Xie, Qian Zhao, and Deyu Meng [PDF] [Supplementary M

Hong Wang 6 Sep 27, 2022
Code for CMaskTrack R-CNN (proposed in Occluded Video Instance Segmentation)

CMaskTrack R-CNN for OVIS This repo serves as the official code release of the CMaskTrack R-CNN model on the Occluded Video Instance Segmentation data

Q . J . Y 61 Nov 25, 2022
A PyTorch Implementation of Single Shot MultiBox Detector

SSD: Single Shot MultiBox Object Detector, in PyTorch A PyTorch implementation of Single Shot MultiBox Detector from the 2016 paper by Wei Liu, Dragom

Max deGroot 4.8k Jan 07, 2023
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
Converting CPT to bert form for use

cpt-encoder 将CPT转成bert形式使用 说明 刚刚刷到又出了一种模型:CPT,看论文显示,在很多中文任务上性能比mac bert还好,就迫不及待想把它用起来。 根据对源码的研究,发现该模型在做nlu建模时主要用的encoder部分,也就是bert,因此我将这部分权重转为bert权重类型

黄辉 1 Oct 14, 2021
PyTorch implementation of Munchausen Reinforcement Learning based on DQN and SAC. Handles discrete and continuous action spaces

Exploring Munchausen Reinforcement Learning This is the project repository of my team in the "Advanced Deep Learning for Robotics" course at TUM. Our

Mohamed Amine Ketata 10 Mar 10, 2022
Rate-limit-semaphore - Semaphore implementation with rate limit restriction for async-style (any core)

Rate Limit Semaphore Rate limit semaphore for async-style (any core) There are t

Yan Kurbatov 4 Jun 21, 2022
BabelCalib: A Universal Approach to Calibrating Central Cameras. In ICCV (2021)

BabelCalib: A Universal Approach to Calibrating Central Cameras This repository contains the MATLAB implementation of the BabelCalib calibration frame

Yaroslava Lochman 55 Dec 30, 2022
Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning

Human-Level Control through Deep Reinforcement Learning Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning. This imp

Devsisters Corp. 2.4k Dec 26, 2022
Repo for 2021 SDD assessment task 2, by Felix, Anna, and James.

SoftwareTask2 Repo for 2021 SDD assessment task 2, by Felix, Anna, and James. File/folder structure: helloworld.py - demonstrates various map backgrou

3 Dec 13, 2022
Attention-based Transformation from Latent Features to Point Clouds (AAAI 2022)

Attention-based Transformation from Latent Features to Point Clouds This repository contains a PyTorch implementation of the paper: Attention-based Tr

12 Nov 11, 2022
A Tensorfflow implementation of Attend, Infer, Repeat

Attend, Infer, Repeat: Fast Scene Understanding with Generative Models This is an unofficial Tensorflow implementation of Attend, Infear, Repeat (AIR)

Adam Kosiorek 82 May 27, 2022
The code for Expectation-Maximization Attention Networks for Semantic Segmentation (ICCV'2019 Oral)

EMANet News The bug in loading the pretrained model is now fixed. I have updated the .pth. To use it, download it again. EMANet-101 gets 80.99 on the

Xia Li 李夏 663 Nov 30, 2022