Deep Implicit Moving Least-Squares Functions for 3D Reconstruction

Related tags

Deep LearningDeepMLS
Overview

DeepMLS: Deep Implicit Moving Least-Squares Functions for 3D Reconstruction

This repository contains the implementation of the paper:

Deep Implicit Moving Least-Squares Functions for 3D Reconstruction [arXiv]
Shi-Lin Liu, Hao-Xiang Guo, Hao Pan, Pengshuai Wang, Xin Tong, Yang Liu.

If you find our code or paper useful, please consider citing

@inproceedings{Liu2021MLS,
 author =  {Shi-Lin Liu, Hao-Xiang Guo, Hao Pan, Pengshuai Wang, Xin Tong, Yang Liu},
 title = {Deep Implicit Moving Least-Squares Functions for 3D Reconstruction},
 year = {2021}}

Installation

First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create an anaconda environment called deep_mls using

conda env create -f environment.yml
conda activate deep_mls

Next, a few customized tensorflow modules should be installed:

O-CNN Module

O-CNN is an octree-based convolution module, please take the following steps to install:

cd Octree && git clone https://github.com/microsoft/O-CNN/
cd O-CNN/octree/external && git clone --recursive https://github.com/wang-ps/octree-ext.git
cd .. && mkdir build && cd build
cmake ..  && cmake --build . --config Release
export PATH=`pwd`:$PATH
cd ../../tensorflow/libs && python build.py --cuda /usr/local/cuda-10.0
cp libocnn.so ../../../ocnn-tf/libs

Efficient Neighbor Searching Ops

Neighbor searching is intensively used in DeepMLS. For efficiency reasons, we provide several customized neighbor searching ops:

cd points3d-tf/points3d
bash build.sh

In this step, some errors like this may occur:

tensorflow_core/include/tensorflow/core/util/gpu_kernel_helper.h:22:10: fatal error: third_party/gpus/cuda/include/cuda_fp16.h: No such file or directory
 #include "third_party/gpus/cuda/include/cuda_fp16.h"

For solving this, please refer to issue.
Basically, We need to edit the codes in tensorflow framework, please modify

#include "third_party/gpus/cuda/include/cuda_fp16.h"

in "site-packages/tensorflow_core/include/tensorflow/core/util/gpu_kernel_helper.h" to

#include "cuda_fp16.h"

and

#include "third_party/gpus/cuda/include/cuComplex.h"
#include "third_party/gpus/cuda/include/cuda.h"

in "site-packages/tensorflow_core/include/tensorflow/core/util/gpu_device_functions.h" to

#include "cuComplex.h"
#include "cuda.h"

Modified Marching Cubes Module

We have modified the PyMCubes to get a more efficient marching cubes method for extract 0-isosurface defined by mls points.
To install:

git clone https://github.com/Andy97/PyMCubes
cd PyMCubes && python setup.py install

Datasets

Preprocessed ShapeNet Dataset

We have provided the processed tfrecords file. This can be used directly.

Our training data is available now! (total 130G+)
Please download all zip files for extraction.
ShapeNet_points_all_train.zip.001
ShapeNet_points_all_train.zip.002
ShapeNet_points_all_train.zip.003
After extraction, please modify the "train_data" field in experiment config json file with this tfrecords name.

Build the Dataset

If you want to build the dataset from your own data, please follow:

Step 1: Get Watertight Meshes

To acquire a watertight mesh, we first preprocess each mesh follow the preprocess steps of Occupancy Networks.

Step 2: Get the groundtruth sdf pair

From step 1, we have already gotten the watertight version of each model. Then, we utilize OpenVDB library to get the sdf values and gradients for training.
For details, please refer to here.

Usage

Inference using pre-trained model

We have provided pretrained models which can be used to inference:

#first download the pretrained models
cd Pretrained && python download_models.py
#then we can use either of the pretrained model to do the inference
cd .. && python DeepMLS_Generation.py Pretrained/Config_d7_1p_pretrained.json --test

The input for the inference is defined in here.
Your can replace it with other point cloud files in examples or your own data.

Extract Isosurface from MLS Points

After inference, now we have network predicted mls points. The next step is to extract the surface:

python mls_marching_cubes.py --i examples/d0fa70e45dee680fa45b742ddc5add59.ply.xyz --o examples/d0fa70e45dee680fa45b742ddc5add59_mc.obj --scale

Training

Our code supports single and multiple gpu training. For details, please refer to the config json file.

python DeepMLS_Generation.py examples/Config_g2_bs32_1p_d6.json

Evaluation

For evaluation of results, ConvONet has provided a great script. Please refer to here.

A machine learning benchmark of in-the-wild distribution shifts, with data loaders, evaluators, and default models.

WILDS is a benchmark of in-the-wild distribution shifts spanning diverse data modalities and applications, from tumor identification to wildlife monitoring to poverty mapping.

P-Lambda 437 Dec 30, 2022
Classification models 1D Zoo - Keras and TF.Keras

Classification models 1D Zoo - Keras and TF.Keras This repository contains 1D variants of popular CNN models for classification like ResNets, DenseNet

Roman Solovyev 12 Jan 06, 2023
PyTorch implementation for STIN

STIN This repository contains PyTorch implementation for STIN. Abstract: In single-photon LiDAR, photon-efficient imaging captures the 3D structure of

Yiweins 2 Nov 22, 2022
We will release the code of "ConTNet: Why not use convolution and transformer at the same time?" in this repo

ConTNet Introduction ConTNet (Convlution-Tranformer Network) is proposed mainly in response to the following two issues: (1) ConvNets lack a large rec

93 Nov 08, 2022
This project contains an implemented version of Face Detection using OpenCV and Mediapipe. This is a code snippet and can be used in projects.

Live-Face-Detection Project Description: In this project, we will be using the live video feed from the camera to detect Faces. It will also detect so

Hassan Shahzad 3 Oct 02, 2021
Face Recognize System on camera AI OAK1

FRS on OAK1 Face Recognize System on camera OAK1 This project contains our work that deploy on camera OAK1 Features Anti-Spoofing Face detection Face

Tran Anh Tuan 6 Aug 08, 2022
Official implementation of the paper 'High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network' in CVPR 2021

LPTN Paper | Supplementary Material | Poster High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network Ji

372 Dec 26, 2022
MPRNet-Cloud-removal: Progressive cloud removal

MPRNet-Cloud-removal Progressive cloud removal Requirements 1.Pytorch = 1.0 2.Python 3 3.NVIDIA GPU + CUDA 9.0 4.Tensorboard Installation 1.Clone the

Semi 95 Dec 18, 2022
A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions

A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions Kapoutsis, A.C., Chatzichristofis,

Athanasios Ch. Kapoutsis 5 Oct 15, 2022
Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM)

Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM) Introduction The average lifetime of the $D^{0}$ me

Son Gyo Jung 1 Dec 17, 2021
[CVPR 2021] Released code for Counterfactual Zero-Shot and Open-Set Visual Recognition

Counterfactual Zero-Shot and Open-Set Visual Recognition This project provides implementations for our CVPR 2021 paper Counterfactual Zero-S

144 Dec 24, 2022
Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network

Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network This is the official implementation of

azad 2 Jul 09, 2022
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation.

ISL This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation, which is accepted

19 May 04, 2022
Vector Neurons: A General Framework for SO(3)-Equivariant Networks

Vector Neurons: A General Framework for SO(3)-Equivariant Networks Created by Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacc

Congyue Deng 332 Dec 29, 2022
Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.

Deep Learning Dataset Maker Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data. How to use Down

deepbands 25 Dec 15, 2022
An Object Oriented Programming (OOP) interface for Ontology Web language (OWL) ontologies.

Enabling a developer to use Ontology Web Language (OWL) along with its reasoning capabilities in an Object Oriented Programming (OOP) paradigm, by pro

TheEngineRoom-UniGe 7 Sep 23, 2022
This repository provides an unified frameworks to train and test the state-of-the-art few-shot font generation (FFG) models.

FFG-benchmarks This repository provides an unified frameworks to train and test the state-of-the-art few-shot font generation (FFG) models. What is Fe

Clova AI Research 101 Dec 27, 2022
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
Baleen: Robust Multi-Hop Reasoning at Scale via Condensed Retrieval (NeurIPS'21)

Baleen Baleen is a state-of-the-art model for multi-hop reasoning, enabling scalable multi-hop search over massive collections for knowledge-intensive

Stanford Future Data Systems 22 Dec 05, 2022