catch-22: CAnonical Time-series CHaracteristics

Related tags

Deep Learningcatch22
Overview

catch22 - CAnonical Time-series CHaracteristics

DOI

About

catch22 is a collection of 22 time-series features coded in C that can be run from Python, R, Matlab, and Julia. The catch22 features are a high-performing subset of the over 7000 features in hctsa.

Features were selected based on their classification performance across a collection of 93 real-world time-series classification problems, as described in our open-access paper:

But what do the features do? You can learn more about what each feature does, with visualizations of how the features behave on real data, here.

The computational pipeline used to generate the catch22 feature set is in the op_importance repository.

For catch22-related information and resources, including a list of publications using catch22, see the catch22 wiki.

Summary of the performance of the catch22 feature set across 93 classification problems, and a comparison to the hctsa feature set (cf. Fig. 4 from our paper):

Installation: Python, R, Matlab, Julia, and compiled C

The fast, C-coded functions in this repository can be used in Python, Matlab, and R following the detailed installation instructions on the wiki.

There is also a native R version, downloadable from CRAN, Rcatch22.

And Julia users can use this Julia package to evaluate the catch22 feature set.

Usage

  • See language-specific usage information in the wiki.
  • Important Note: catch22 features only evaluate dynamical properties of time series and do not respond to basic differences in the location (e.g., mean) or spread (e.g., variance).
    • If you think features of the raw distribution may be important for your application, we suggest you add them (in the simplest case, two additional features: the mean and standard deviation) to this feature set.
  • Note that time series are z-scored internally which means e.g., constant time series will lead to NaN outputs.
Comments
  • Why catch22-0.2.0 got deleted from pypi

    Why catch22-0.2.0 got deleted from pypi

    Ideally, the version should be updated or can be made deprecated. But should not be removed from the repository(PyPi). Can you please upload them back with some new versions tags ?

    opened by cahuja1992 5
  • Anaconda Python 3 pip install not working

    Anaconda Python 3 pip install not working

    I tried pip install catch22 and got a long error log. These are the last few lines:

        C/SP_Summaries.c:161:9: error: ‘for’ loop initial declarations are only allowed in C99 mode
                 for(int i = 0; i < nWelch; i ++){
                 ^
        C/SP_Summaries.c:173:9: error: ‘for’ loop initial declarations are only allowed in C99 mode
                 for(int i=0; i<nWelch/5; i++){
                 ^
        error: command 'gcc' failed with exit status 1
        ----------------------------------------
    ERROR: Command errored out with exit status 1: /home/username/anaconda3/bin/python -u -c 'import sys, setuptools, tokenize; sys.argv[0] = '"'"'/tmp/pip-install-kiwf2hln/catch22/setup.py'"'"'; __file__='"'"'/tmp/pip-install-kiwf2hln/catch22/setup.py'"'"';f=getattr(tokenize, '"'"'open'"'"', open)(__file__);code=f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' install --record /tmp/pip-record-jtj01ddj/install-record.txt --single-version-externally-managed --compile --install-headers /home/username/anaconda3/include/python3.7m/catch22 Check the logs for full command output.
    

    System: Anaconda3, CentOS 7

    Any ideas?

    opened by chanshing 4
  • Generating a shared library for the C implementation (and using that to build pycatch22 etc.)

    Generating a shared library for the C implementation (and using that to build pycatch22 etc.)

    Hello!

    We package and maintain catch22 for Fedora Linux. Now that pycatch22 has been split into its own repo and bundles the C sources, we were wondering if:

    • it would make sense to compile the C sources from here and provide catch22 as a shared library (libcatch22.so.0 types on Linux)
    • use the shared library to link against when building pycatch22 etc.

    The advantage of this is that we won't need to bundle catch22 in pycatch22, and that catch22 is provided as a library for people using C to use.

    @musicinmybrain has created a pull request that generates the shared library (by adding a Makefile and so on) here. The main question here, as you'll see from that pull request, is whether you (upstream) intend to provide it as a C library, and if you do, would you be committing to ABI/shared object versioning etc. to notify users of changes and so on?

    Link to the libtool documentation on versioning: https://www.gnu.org/software/libtool/manual/html_node/Versioning.html#Versioning

    opened by sanjayankur31 3
  • Modified CO_f1ecac feature to use interpolation

    Modified CO_f1ecac feature to use interpolation

    I've modified the CO_f1ecac feature to use interpolation, making it a double (and equivalent to the HCTSA function). See HCTSA's CO_AutoCorr.m and BF_PointOfCrossing.m

    opened by olivercliff 3
  • WIP: catch24 integration

    WIP: catch24 integration

    Adds new .c and .h files for 2 new functions: DN_Mean and DN_Spread_Std which represent the mean and standard deviation, respectively. Adds a boolean argument to core function calls where users can specify if they want to compute catch24 or just catch22. Need to run tests to check everything is working properly, but I have made changes to C code, and R and Python wrappers. @benfulcher changes will need to be made to the MATLAB wrapper too, right?

    I'll remove the drafting tag once I have worked through unit tests, but either of you can feel free to run the additions and check they work if you have time.

    enhancement 
    opened by hendersontrent 3
  • Memory leaks fix

    Memory leaks fix

    Hi,

    First of all, thanks for this great package!

    I noticed that when doing a lot of calls to catch22.catch22_all(data), the memory consumption of grows. This pull request frees C arrays in C/CO_AutoCorr.c, C/helper_functions.c and wrap_Python/catch22_wrap_P3.c. With these changes, the memory consumption is stable. You can test this for yourself by running the following code before and after applying the changes that I am proposing.

    import catch22
    import numpy as np
    from memory_profiler import profile
    
    @profile
    def catch22_all(signal):
        catch22.catch22_all(signal)
        
    for i in range(10000):
        signal = np.random.randn(1000)
        catch22_all(signal)
    
    opened by Olivier-tl 3
  • Correction in CO_Histogram_AMI_even_2_5 implementation

    Correction in CO_Histogram_AMI_even_2_5 implementation

    Referring to this code snippet in CO_AutoCorr.c

    #define tau 2
    #define numBins 5
    
    double CO_HistogramAMI_even_2_5(const double y[], const int size)
    

    Why tau is 2 and numBins is 5? Shouldn't it be vice-versa according to the implementation of hctsa feature

    opened by imraniac 3
  • Error installing R package on Windows

    Error installing R package on Windows

    Hi,

    I have problem to install your package from R...following errors occurred:

    • installing source package 'catch22' ... ** libs c:/Rtools/mingw_64/bin/gcc -I"C:/PROGRA~1/R/R-35~1.1/include" -DNDEBUG -I../inst/include -I"C:/Users/PeterLaurinec/Documents/R/win-library/3.5/Rcpp/include" -O2 -Wall -std=gnu99 -mtune=generic -c CO_AutoCorr.c -o CO_AutoCorr.o In file included from CO_AutoCorr.c:8:0: CO_AutoCorr.c: In function 'CO_AutoCorr': fft.h:16:43: error: '_Imaginary_I' undeclared (first use in this function) #define CMPLX(x, y) ((cplx)((double)(x) + _Imaginary_I * (double)(y))) ^ CO_AutoCorr.c:63:16: note: in expansion of macro 'CMPLX' F[i] = CMPLX(y[i] - m, 0.0); ^ fft.h:16:43: note: each undeclared identifier is reported only once for each function it appears in #define CMPLX(x, y) ((cplx)((double)(x) + _Imaginary_I * (double)(y))) ^ CO_AutoCorr.c:63:16: note: in expansion of macro 'CMPLX' F[i] = CMPLX(y[i] - m, 0.0); ^ CO_AutoCorr.c: In function 'co_autocorrs': fft.h:16:43: error: '_Imaginary_I' undeclared (first use in this function) #define CMPLX(x, y) ((cplx)((double)(x) + _Imaginary_I * (double)(y))) ^ CO_AutoCorr.c:97:16: note: in expansion of macro 'CMPLX' F[i] = CMPLX(y[i] - m, 0.0); ^ CO_AutoCorr.c: In function 'CO_HistogramAMI_even_2_5': CO_AutoCorr.c:347:5: error: variable-sized object may not be initialized double binEdges[numBins+1] = {0}; ^ CO_AutoCorr.c:347:5: warning: excess elements in array initializer CO_AutoCorr.c:347:5: warning: (near initialization for 'binEdges') CO_AutoCorr.c:370:5: error: variable-sized object may not be initialized double binEdges12[(numBins + 1) * (numBins + 1)] = {0}; ^ CO_AutoCorr.c:370:5: warning: excess elements in array initializer CO_AutoCorr.c:370:5: warning: (near initialization for 'binEdges12') CO_AutoCorr.c:414:5: error: variable-sized object may not be initialized double pi[numBins] = {0}; ^ CO_AutoCorr.c:414:5: warning: excess elements in array initializer CO_AutoCorr.c:414:5: warning: (near initialization for 'pi') CO_AutoCorr.c:415:5: error: variable-sized object may not be initialized double pj[numBins] = {0}; ^ CO_AutoCorr.c:415:5: warning: excess elements in array initializer CO_AutoCorr.c:415:5: warning: (near initialization for 'pj') make: *** [C:/PROGRA~1/R/R-35~1.1/etc/x64/Makeconf:208: CO_AutoCorr.o] Error 1 ERROR: compilation failed for package 'catch22'

    Any idea? Thx

    opened by PetoLau 2
  • python3 issue

    python3 issue

    There is a difficulty in compiling using python3. E.g., python3 setup.py build gives the following:

    running build
    running build_ext
    building 'catch22_C' extension
    creating build
    creating build/temp.macosx-10.7-x86_64-3.7
    creating build/C
    gcc -Wno-unused-result -Wsign-compare -Wunreachable-code -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -I/Users/alex/miniconda3/envs/pipe-516-ram-mating-behaviour/include -arch x86_64 -I/Users/alex/miniconda3/envs/pipe-516-ram-mating-behaviour/include -arch x86_64 -I../C/ -I/Users/alex/miniconda3/envs/pipe-516-ram-mating-behaviour/include/python3.7m -c catch22_wrap.c -o build/temp.macosx-10.7-x86_64-3.7/catch22_wrap.o
    gcc -Wno-unused-result -Wsign-compare -Wunreachable-code -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -I/Users/alex/miniconda3/envs/pipe-516-ram-mating-behaviour/include -arch x86_64 -I/Users/alex/miniconda3/envs/pipe-516-ram-mating-behaviour/include -arch x86_64 -I../C/ -I/Users/alex/miniconda3/envs/pipe-516-ram-mating-behaviour/include/python3.7m -c ../C/MD_hrv.c -o build/temp.macosx-10.7-x86_64-3.7/../C/MD_hrv.o
    gcc -Wno-unused-result -Wsign-compare -Wunreachable-code -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -I/Users/alex/miniconda3/envs/pipe-516-ram-mating-behaviour/include -arch x86_64 -I/Users/alex/miniconda3/envs/pipe-516-ram-mating-behaviour/include -arch x86_64 -I../C/ -I/Users/alex/miniconda3/envs/pipe-516-ram-mating-behaviour/include/python3.7m -c ../C/SP_Summaries.c -o build/temp.macosx-10.7-x86_64-3.7/../C/SP_Summaries.o
    In file included from ../C/CO_AutoCorr.h:9:0,
                     from ../C/SP_Summaries.c:9:
    ../C/SP_Summaries.c: In function 'welch':
    ../C/fft.h:16:43: error: '_Imaginary_I' undeclared (first use in this function)
     #define CMPLX(x, y) ((cplx)((double)(x) + _Imaginary_I * (double)(y)))
                                               ^
    ../C/SP_Summaries.c:43:20: note: in expansion of macro 'CMPLX'
                 F[i] = CMPLX(xw[i] - m, 0.0);
                        ^~~~~
    ../C/fft.h:16:43: note: each undeclared identifier is reported only once for each function it appears in
     #define CMPLX(x, y) ((cplx)((double)(x) + _Imaginary_I * (double)(y)))
                                               ^
    ../C/SP_Summaries.c:43:20: note: in expansion of macro 'CMPLX'
                 F[i] = CMPLX(xw[i] - m, 0.0);
                        ^~~~~
    ../C/SP_Summaries.c:71:13: warning: suggest parentheses around comparison in operand of '&' [-Wparentheses]
             if(i>0 & i < Nout-1){
                ~^~
    error: command 'gcc' failed with exit status 1
    

    Can fix? Or just limit to python2?

    opened by benfulcher 2
  • Python package version mismatch

    Python package version mismatch

    In release 0.4.0, the Python package instead has version 0.3.1.

    https://github.com/DynamicsAndNeuralSystems/catch22/blob/2e1a271c6a7437b6a4a754e1adc7e34d7a224c01/wrap_Python/setup.py#L17

    https://github.com/DynamicsAndNeuralSystems/catch22/blob/2e1a271c6a7437b6a4a754e1adc7e34d7a224c01/wrap_Python/setup_P3.py#L17

    opened by musicinmybrain 1
  • Error installing R wrapper (+ fixes for docs)

    Error installing R wrapper (+ fixes for docs)

    Been trying to install the R wrapper without much success (though more success than I've had with the Python and Matlab wrappers!). I noticed a few issues with the documentation along the way, and have noted them here along with the error I get:

    The install docs refer to./C_functions, but this directory appears to be./C in current builds.

    I think the .c and .h files are supposed to be moved to ./wrap_R/catch22/src, rather than ./wrap_R/src (which is specified in the install instructions, but does not actually exist unless I manually create it).

    Running R CMD INSTALL catch22_x.y.tar.gz only “works” in the latter case, and then only if R CMD build catch22 was run after the .c and .h files are copied to ./wrap_R/catch22/src. Attempting to build with these files in ./wrap_R/src causes the following error:

    catch22_wrap.cpp:5:25: fatal error: CO_AutoCorr.h: No such file or directory
    

    The docs should clarify that users should replace catch22_x.y.tar.gz with the tar file generated by the previous step. The name of this fill will depend on their version of catch22.

    Fixing the error related to the location of the C files got me as far as the following error. Any advice would be appreciated:

    (r-environment) # [email protected] in ~/Software/catch22/wrap_R [17:55:06]
    $ R CMD INSTALL catch22_0.1.tar.gz
    * installing to library \u2018/home/despoB/dlurie/anaconda3/envs/r-environment/lib/R/library\u2019
    * installing *source* package \u2018catch22\u2019 ...
    ** libs
    gcc -std=gnu99 -I/home/despoB/dlurie/anaconda3/envs/r-environment/lib/R/include -DNDEBUG -I../inst/include -I"/home/despoB/dlurie/anaconda3/envs/r-environment/lib/R/library/Rcpp/include" -I/home/despoB/dlurie/anaconda3/envs/r-environment/include   -fpic  -I/home/despoB/dlurie/anaconda3/envs/r-environment/include  -c CO_AutoCorr.c -o CO_AutoCorr.o
    In file included from CO_AutoCorr.c:8:0:
    CO_AutoCorr.c: In function \u2018CO_AutoCorr\u2019:
    fft.h:16:43: error: \u2018_Imaginary_I\u2019 undeclared (first use in this function)
     #define CMPLX(x, y) ((cplx)((double)(x) + _Imaginary_I * (double)(y)))
                                               ^
    CO_AutoCorr.c:63:16: note: in expansion of macro \u2018CMPLX\u2019
             F[i] = CMPLX(y[i] - m, 0.0);
                    ^
    fft.h:16:43: note: each undeclared identifier is reported only once for each function it appears in
     #define CMPLX(x, y) ((cplx)((double)(x) + _Imaginary_I * (double)(y)))
                                               ^
    CO_AutoCorr.c:63:16: note: in expansion of macro \u2018CMPLX\u2019
             F[i] = CMPLX(y[i] - m, 0.0);
                    ^
    CO_AutoCorr.c: In function \u2018co_autocorrs\u2019:
    fft.h:16:43: error: \u2018_Imaginary_I\u2019 undeclared (first use in this function)
     #define CMPLX(x, y) ((cplx)((double)(x) + _Imaginary_I * (double)(y)))
                                               ^
    CO_AutoCorr.c:97:16: note: in expansion of macro \u2018CMPLX\u2019
             F[i] = CMPLX(y[i] - m, 0.0);
                    ^
    make: *** [CO_AutoCorr.o] Error 1
    ERROR: compilation failed for package \u2018catch22\u2019
    * removing \u2018/home/despoB/dlurie/anaconda3/envs/r-environment/lib/R/library/catch22\u2019
    
    opened by danlurie 1
  • 14 * possible use of wrong binary operator ?

    14 * possible use of wrong binary operator ?

    fedora/pass300/20220906/catch22.spec.out:IN_AutoMutualInfoStats.c:44:19: warning: suggest parentheses around comp arison in operand of '&' [-Wparentheses] fedora/pass300/20220906/catch22.spec.out:PD_PeriodicityWang.c:66:20: warning: suggest parentheses around comparis on in operand of '&' [-Wparentheses] fedora/pass300/20220906/catch22.spec.out:PD_PeriodicityWang.c:72:25: warning: suggest parentheses around comparis on in operand of '&' [-Wparentheses] fedora/pass300/20220906/catch22.spec.out:SB_BinaryStats.c:40:20: warning: suggest parentheses around comparison i n operand of '|' [-Wparentheses] fedora/pass300/20220906/catch22.spec.out:SB_BinaryStats.c:78:20: warning: suggest parentheses around comparison i n operand of '|' [-Wparentheses] fedora/pass300/20220906/catch22.spec.out:SP_Summaries.c:86:13: warning: suggest parentheses around comparison in operand of '&' [-Wparentheses] fedora/pass300/20220906/catch22.spec.out:splinefit.c:606:14: warning: suggest parentheses around comparison in op erand of '&' [-Wparentheses] fedora/pass300/20220906/catch22.spec.out:../C/IN_AutoMutualInfoStats.c:44:19: warning: suggest parentheses around comparison in operand of ‘&’ [-Wparentheses] fedora/pass300/20220906/catch22.spec.out:../C/PD_PeriodicityWang.c:66:20: warning: suggest parentheses around com parison in operand of ‘&’ [-Wparentheses] fedora/pass300/20220906/catch22.spec.out:../C/PD_PeriodicityWang.c:72:25: warning: suggest parentheses around com parison in operand of ‘&’ [-Wparentheses] fedora/pass300/20220906/catch22.spec.out:../C/SB_BinaryStats.c:40:20: warning: suggest parentheses around compari son in operand of ‘|’ [-Wparentheses] fedora/pass300/20220906/catch22.spec.out:../C/SB_BinaryStats.c:78:20: warning: suggest parentheses around compari son in operand of ‘|’ [-Wparentheses] fedora/pass300/20220906/catch22.spec.out:../C/SP_Summaries.c:86:13: warning: suggest parentheses around compariso n in operand of ‘&’ [-Wparentheses] fedora/pass300/20220906/catch22.spec.out:../C/splinefit.c:606:14: warning: suggest parentheses around comparison in operand of ‘&’ [-Wparentheses]

    I checked the first two, presumably the rest are the same.

    opened by dcb314 1
  • Installation failure: `for’ loop initial declarations are only allowed in C99 mode`

    Installation failure: `for’ loop initial declarations are only allowed in C99 mode`

    When running pip install catch22, the C compilation seems to complain. I tried it with python 3.7-3.9.

     C/CO_AutoCorr.c:531:9: error: ‘for’ loop initial declarations are only allowed in C99 mode
                 for(int j = 0; j < numBins; j++){
                 ^
        error: command '/usr/bin/gcc' failed with exit code 1
        ----------------------------------------
    ERROR: Command errored out with exit status 1: /home/cxx579/anaconda3/envs/test_env/bin/python -u -c 'import io, os, sys, setuptools, tokenize; sys.argv[0] = '"'"'/tmp/pip-install-l6lnk30h/catch22_0230d4e651e84fa1a6f4489c53513e34/setup.py'"'"'; __file__='"'"'/tmp/pip-install-l6lnk30h/catch22_0230d4e651e84fa1a6f4489c53513e34/setup.py'"'"';f = getattr(tokenize, '"'"'open'"'"', open)(__file__) if os.path.exists(__file__) else io.StringIO('"'"'from setuptools import setup; setup()'"'"');code = f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' install --record /tmp/pip-record-g8rdn06o/install-record.txt --single-version-externally-managed --compile --install-headers /home/cxx579/anaconda3/envs/test_env/include/python3.9/catch22 Check the logs for full command output.
    

    I am not an expert in C and how it tights up with the Python wrapper but it might. have to do with this? Any ideas how to fix this. Thx :D

    This issue can be fixed by

    export CFLAGS="-std=c99"
    

    However, it might be good to change the for loop instantiation that is more compatible by declaring the the iteration variable outside the loop like:

    int i;
    for (i=0;i<10;i++) { ..
    
    opened by angerhang 0
  • Segmentation Faults on Small Datasets

    Segmentation Faults on Small Datasets

    What Happened

    Get a segmentation fault when running catch22.catch22_all on short lists/numpy.arrays.

    What I Expected to Happen

    Returns a dictionary of features (perhaps with a lot of NaN-types due to the short timeseries)

    Minimum Complete Verifable Example

    >>> import catch22
    >>> catch22.catch22_all([1,2])
    Segmentation fault
    

    Further Details

    Can check that this doesn't happen with longer arrays like so:

    import catch22
    timeseries = list(range(10))
    while timeseries:
        print(len(timeseries))
        catch22.catch22_all(timeseries)
        timeseries = timeseries[:-1]
    
    opened by evanharwin 4
  • Failed to install catch22

    Failed to install catch22

    I am using Sagemaker notebook and failed to install catch22 package.

    Tried to add 'extra_compile_args = ['-std=c99']' before running 'pip install catch22'. Getting the following error:

    C/SC_FluctAnal.c:12:5: note: use option -std=c99 or -std=gnu99 to compile your code

    opened by Sidshroff 0
  • wrap_Python setup.py should add

    wrap_Python setup.py should add "extra_compile_args = ['-std=c99']" (GCC 7.5.0)

    or else the compilation will fail in Linux. setup_P3.py :

    the c++ extension module
    extension_mod = Extension("catch22_C",
            sources=["catch22_wrap_P3.c"] + sourceFileList,
            include_dirs=[sourceDir],
            extra_compile_args = ['-std=c99']
    )
    

    Python:

        active environment : base
        active env location : /opt/anaconda
                shell level : 1
           user config file : /root/.condarc
     populated config files : /root/.condarc
              conda version : 4.9.2
        conda-build version : 3.17.8
             python version : 3.7.3.final.0
           virtual packages : __glibc=2.27=0
                              __unix=0=0
                              __archspec=1=x86_64
    

    gcc

    Using built-in specs.
    COLLECT_GCC=gcc
    COLLECT_LTO_WRAPPER=/usr/lib/gcc/x86_64-linux-gnu/7/lto-wrapper
    OFFLOAD_TARGET_NAMES=nvptx-none
    OFFLOAD_TARGET_DEFAULT=1
    Target: x86_64-linux-gnu
    Configured with: ../src/configure -v --with-pkgversion='Ubuntu 7.5.0-3ubuntu1~18.04' --with-bugurl=file:///usr/share/doc/gcc-7/README.Bugs --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++ --prefix=/usr --with-gcc-major-version-only --program-suffix=-7 --program-prefix=x86_64-linux-gnu- --enable-shared --enable-linker-build-id --libexecdir=/usr/lib --without-included-gettext --enable-threads=posix --libdir=/usr/lib --enable-nls --enable-bootstrap --enable-clocale=gnu --enable-libstdcxx-debug --enable-libstdcxx-time=yes --with-default-libstdcxx-abi=new --enable-gnu-unique-object --disable-vtable-verify --enable-libmpx --enable-plugin --enable-default-pie --with-system-zlib --with-target-system-zlib --enable-objc-gc=auto --enable-multiarch --disable-werror --with-arch-32=i686 --with-abi=m64 --with-multilib-list=m32,m64,mx32 --enable-multilib --with-tune=generic --enable-offload-targets=nvptx-none --without-cuda-driver --enable-checking=release --build=x86_64-linux-gnu --host=x86_64-linux-gnu --target=x86_64-linux-gnu
    Thread model: posix
    gcc version 7.5.0 (Ubuntu 7.5.0-3ubuntu1~18.04)
    
    opened by xiaoluffy 0
  • Failed to install

    Failed to install

    Hi, I failed to install it in Python, would you mind checking out what is the problem? And how to use catch22? Is there a GUI or maybe a handbook for detailed method? image

    opened by IrenXu 7
Releases(v0.4.0)
  • v0.4.0(Jun 21, 2022)

  • v0.3.1(Jun 9, 2022)

    Adds a catch24 option to compute Mean (DN_Mean) and Standard Deviation (DN_Spread_Std) as features in addition to the standard catch22. Deletes R wrapper from repository as native R implementation Rcatch22 is on CRAN and requires no manual compilation. Interpolates the CO_f1ecac feature to now return a double instead of an integer for more nuanced performance in feature-based time-series analysis applications, such as time-series classification.

    Source code(tar.gz)
    Source code(zip)
  • v0.2.1(Jan 11, 2021)

  • v0.2.0(Jan 10, 2021)

  • v0.1.0(Jun 21, 2020)

Owner
Carl H Lubba
Carl H Lubba
STBP is a way to train SNN with datasets by Backward propagation.

Spiking neural network (SNN), compared with depth neural network (DNN), has faster processing speed, lower energy consumption and more biological interpretability, which is expected to approach Stron

Ling Zhang 18 Dec 09, 2022
Code for paper "Multi-level Disentanglement Graph Neural Network"

Multi-level Disentanglement Graph Neural Network (MD-GNN) This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:

Lirong Wu 6 Dec 29, 2022
Official Pytorch implementation of "DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network" (CVPR'21)

DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network Pytorch implementation for our DivCo. We propose a simple ye

64 Nov 22, 2022
Real-time Neural Representation Fusion for Robust Volumetric Mapping

NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric Mapping Paper | Supplementary This repository contains the implementation of

ETHZ ASL 106 Dec 24, 2022
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
Simulation of self-focusing of laser beams in condensed media

What is it? Program for scientific research, which allows to simulate the phenomenon of self-focusing of different laser beams (including Gaussian, ri

Evgeny Vasilyev 13 Dec 24, 2022
A framework for Quantification written in Python

QuaPy QuaPy is an open source framework for quantification (a.k.a. supervised prevalence estimation, or learning to quantify) written in Python. QuaPy

41 Dec 14, 2022
PyTorch wrappers for using your model in audacity!

audacitorch This package contains utilities for prepping PyTorch audio models for use in Audacity. More specifically, it provides abstract classes for

Hugo Flores García 130 Dec 14, 2022
pixelNeRF: Neural Radiance Fields from One or Few Images

pixelNeRF: Neural Radiance Fields from One or Few Images Alex Yu, Vickie Ye, Matthew Tancik, Angjoo Kanazawa UC Berkeley arXiv: http://arxiv.org/abs/2

Alex Yu 1k Jan 04, 2023
An Open-Source Toolkit for Prompt-Learning.

An Open-Source Framework for Prompt-learning. Overview • Installation • How To Use • Docs • Paper • Citation • What's New? Nov 2021: Now we have relea

THUNLP 2.3k Jan 07, 2023
This is a collection of our NAS and Vision Transformer work.

This is a collection of our NAS and Vision Transformer work.

Microsoft 828 Dec 28, 2022
Discerning Decision-Making Process of Deep Neural Networks with Hierarchical Voting Transformation

Configurations Change HOME_PATH in CONFIG.py as the current path Data Prepare CENSINCOME Download data Put census-income.data and census-income.test i

2 Aug 14, 2022
PyTorch implementation of the paper The Lottery Ticket Hypothesis for Object Recognition

LTH-ObjectRecognition The Lottery Ticket Hypothesis for Object Recognition Sharath Girish*, Shishira R Maiya*, Kamal Gupta, Hao Chen, Larry Davis, Abh

16 Feb 06, 2022
Keras code and weights files for popular deep learning models.

Trained image classification models for Keras THIS REPOSITORY IS DEPRECATED. USE THE MODULE keras.applications INSTEAD. Pull requests will not be revi

François Chollet 7.2k Dec 29, 2022
Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning" (AAAI 2021)

Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic

NAVER/LINE Vision 30 Dec 06, 2022
Code for the paper "Generative design of breakwaters usign deep convolutional neural network as a surrogate model"

Generative design of breakwaters usign deep convolutional neural network as a surrogate model This repository contains the code for the paper "Generat

2 Apr 10, 2022
一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。

captcha_server 一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。 使用方法 python = 3.8 以上环境 pip install -r requirements.txt -i https://pypi.douban.com/simple gun

Sml2h3 189 Dec 02, 2022
EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness

EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness Improving GAN Equilibrium by Raising Spatial Awareness Jianyuan Wang, Ceyuan Yang, Ying

GenForce: May Generative Force Be with You 149 Dec 19, 2022
Spherical CNNs

Spherical CNNs Equivariant CNNs for the sphere and SO(3) implemented in PyTorch Overview This library contains a PyTorch implementation of the rotatio

Jonas Köhler 893 Dec 28, 2022
E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

11 Nov 08, 2022