Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Overview

Graph-to-Graph Transformers

Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NLP) tasks, especially when combined with language-model pre-training, such as BERT.

We propose "Graph-to-Graph Transformer" and "Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement"(accepted to TACL) to generalize vanilla Transformer to encode graph structure, and builds the desired output graph.

Note : To use G2GTr model for transition-based dependency parsing, please refer to G2GTr repository.

Contents

Installation

Following packages should be included in your environment:

  • Python >= 3.7
  • PyTorch >= 1.4.0
  • Transformers(huggingface) = 2.4.1

The easier way is to run the following command:

conda env create -f environment.yml
conda activate rngtr

Quick Start

Graph-to-Graph Transformer architecture is general and can be applied to any NLP tasks which interacts with graphs. To use our implementation in your task, you just need to add BertGraphModel class to your code to encode both token-level and graph-level information. Here is a sample usage:

#Loading BertGraphModel and initialize it with available BERT models.
import torch
from parser.utils.graph import initialize_bertgraph,BertGraphModel
# inputing unlabelled graph with label size 5, and Layer Normalization of key
# you can load other BERT pre-trained models too.
encoder = initialize_bertgraph('bert-base-cased',layernorm_key=True,layernorm_value=False,
             input_label_graph=False,input_unlabel_graph=True,label_size=5)

#sample input
input = torch.tensor([[1,2],[3,4]])
graph = torch.tensor([ [[1,0],[0,1]],[[0,1],[1,0]] ])
graph_rel = torch.tensor([[0,1],[3,4]])
output = encoder(input_ids=input,graph_arc=graph,graph_rel=graph_rel)
print(output[0].shape)
## torch.Size([2, 2, 768])

# inputting labelled graph
encoder = initialize_bertgraph('bert-base-cased',layernorm_key=True,layernorm_value=False,
             input_label_graph=True,input_unlabel_graph=False,label_size=5)

#sample input
input = torch.tensor([[1,2],[3,4]])
graph = torch.tensor([ [[2,0],[0,3]],[[0,1],[4,0]] ])
output = encoder(input_ids=input,graph_arc=graph,)
print(output[0].shape)
## torch.Size([2, 2, 768])

If you just want to use BertGraphModel in your research, you can just import it from our repository:

from parser.utils.graph import BertGraphModel,BertGraphConfig
config = BertGraphConfig(YOUR-CONFIG)
config.add_graph_par(GRAPH-CONFIG)
encoder = BertGraphModel(config)

Data Pre-processing and Initial Parser

Dataset Preparation

We evaluated our model on UD Treebanks, English and Chinese Penn Treebanks, and CoNLL 2009 Shared Task. In following sections, we prepare datasets and their evaluation scripts.

Penn Treebanks

English Penn Treebank can be downloaded from english and chinese under LDC license. For English Penn Treebank, replace gold POS tags with Stanford POS tagger with following command in this repository:

bash scripts/postag.sh ${data_dir}/ptb3-wsj-[train|dev|dev.proj|test].conllx

CoNLL 2009 Treebanks

You can download Treebanks from here under LDC license. We use predicted POS tags provided by organizers.

UD Treebanks

You can find required Treebanks from here. (use version 2.3)

Initial Parser

As mentioned in our paper, you can use any initial parser to produce dependency graph. Here we use Biaffine Parser for Penn Treebanks, and German Corpus. We also apply our model to ouput prediction of UDify parser for UD Treebanks.
Biaffine Parser: To prepare biaffine initial parser, we use this repository to produce output predictions.
UDify Parser: For UD Treebanks, we use UDify repository to produce required initial dependency graph.
Alternatively, you can easily run the following command file to produce all required outputs:

bash job_scripts/udify_dataset.bash

Training

To train your own model, you can easily fill out the script in job_scripts directory, and run it. Here is the list of sample scripts:

Model Script
Syntactic Transformer baseline.bash
Any initial parser+RNGTr rngtr.bash
Empty+RNGTr empty_rngtr.bash

Evaluation

First you should download official scripts from UD, Penn Treebaks, and German. Then, run the following command:

bash job_scripts/predict.bash

To replicate refinement analysis and error analysis results, you should use MaltEval tools.

Predict Raw Sentences

You can also predict dependency graphs of raw texts with a pre-trained model by modifying predict.bash file. Just set input_type to raw. Then, put all your sentences in a .txt file, and the output will be in CoNNL format.

Citations

If you use this code for your research, please cite these works as:

@misc{mohammadshahi2020recursive,
      title={Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement}, 
      author={Alireza Mohammadshahi and James Henderson},
      year={2020},
      eprint={2003.13118},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
@inproceedings{mohammadshahi-henderson-2020-graph,
    title = "Graph-to-Graph Transformer for Transition-based Dependency Parsing",
    author = "Mohammadshahi, Alireza  and
      Henderson, James",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.findings-emnlp.294",
    pages = "3278--3289",
    abstract = "We propose the Graph2Graph Transformer architecture for conditioning on and predicting arbitrary graphs, and apply it to the challenging task of transition-based dependency parsing. After proposing two novel Transformer models of transition-based dependency parsing as strong baselines, we show that adding the proposed mechanisms for conditioning on and predicting graphs of Graph2Graph Transformer results in significant improvements, both with and without BERT pre-training. The novel baselines and their integration with Graph2Graph Transformer significantly outperform the state-of-the-art in traditional transition-based dependency parsing on both English Penn Treebank, and 13 languages of Universal Dependencies Treebanks. Graph2Graph Transformer can be integrated with many previous structured prediction methods, making it easy to apply to a wide range of NLP tasks.",
}

Have a question not listed here? Open a GitHub Issue or send us an email.

Owner
Idiap Research Institute
Idiap Research Institute
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

ood-text-emnlp Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them" Files fine_tune.py is used to finetune the GPT-2 mo

Udit Arora 19 Oct 28, 2022
Using deep actor-critic model to learn best strategies in pair trading

Deep-Reinforcement-Learning-in-Stock-Trading Using deep actor-critic model to learn best strategies in pair trading Abstract Partially observed Markov

281 Dec 09, 2022
Supplementary code for the paper "Meta-Solver for Neural Ordinary Differential Equations" https://arxiv.org/abs/2103.08561

Meta-Solver for Neural Ordinary Differential Equations Towards robust neural ODEs using parametrized solvers. Main idea Each Runge-Kutta (RK) solver w

Julia Gusak 25 Aug 12, 2021
DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predicate.

DeepProbLog DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predic

KU Leuven Machine Learning Research Group 94 Dec 18, 2022
NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions Overview NUANCED is a user-centric conversational recommen

Facebook Research 18 Dec 28, 2021
A simple program for training and testing vit

Vit This is a simple program for training and testing vit. Key requirements: torch, torchvision and timm. Dataset I put 5 categories of the cub classi

xiezhenyu 2 Oct 11, 2022
Much faster than SORT(Simple Online and Realtime Tracking), a little worse than SORT

QSORT QSORT(Quick + Simple Online and Realtime Tracking) is a simple online and realtime tracking algorithm for 2D multiple object tracking in video s

Yonghye Kwon 8 Jul 27, 2022
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF

Google 625 Dec 30, 2022
PyGCL: Graph Contrastive Learning Library for PyTorch

PyGCL: Graph Contrastive Learning for PyTorch PyGCL is an open-source library for graph contrastive learning (GCL), which features modularized GCL com

GCL: Graph Contrastive Learning Library for PyTorch 594 Jan 08, 2023
Python interface for SmartRF Sniffer 2 Firmware

#TI SmartRF Packet Sniffer 2 Python Interface TI Makes available a nice packet sniffer firmware, which interfaces to Wireshark. You can see this proje

Colin O'Flynn 3 May 18, 2021
Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19

2s-AGCN Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19 Note PyTorch version should be 0.3! For PyTor

LShi 547 Dec 26, 2022
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

35 Dec 06, 2022
Code for NeurIPS 2021 paper 'Spatio-Temporal Variational Gaussian Processes'

Spatio-Temporal Variational GPs This repository is the official implementation of the methods in the publication: O. Hamelijnck, W.J. Wilkinson, N.A.

AaltoML 26 Sep 16, 2022
Tensorflow implementation of DeepLabv2

TF-deeplab This is a Tensorflow implementation of DeepLab, compatible with Tensorflow 1.2.1. Currently it supports both training and testing the ResNe

Chenxi Liu 21 Sep 27, 2022
BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search

BossNAS This repository contains PyTorch evaluation code, retraining code and pretrained models of our paper: BossNAS: Exploring Hybrid CNN-transforme

Changlin Li 127 Dec 26, 2022
Official release of MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis of Pancreatic Cancer axriv: http://arxiv.org/abs/2112.13513

MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis This is the official page of the MSHT with its experimental script and records. We de

Tianyi Zhang 53 Dec 27, 2022
Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe

Benoit Brummer 6 Jun 16, 2022
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
Empower Sequence Labeling with Task-Aware Language Model

LM-LSTM-CRF Check Our New NER Toolkit 🚀 🚀 🚀 Inference: LightNER: inference w. models pre-trained / trained w. any following tools, efficiently. Tra

Liyuan Liu 838 Jan 05, 2023