CVPR2021 Content-Aware GAN Compression

Overview

Content-Aware GAN Compression [ArXiv]

Paper accepted to CVPR2021.

@inproceedings{liu2021content,
  title     = {Content-Aware GAN Compression},
  author    = {Liu, Yuchen and Shu, Zhixin and Li, Yijun and Lin, Zhe and Perazzi, Federico and Kung, S.Y.},
  booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year      = {2021},
}

Overview

We propose a novel content-aware approach for GAN compression. With content-awareness, our 11x-accelerated GAN performs comparably with the full-size model on image generation and image editing.

Image Generation

We show an example above on the generative ability of our 11x-accelerated generator vs. the full-size one. In particular, our model generates the interested contents visually comparable to the full-size model.

Image Editing

We show an example typifying the effectiveness of our compressed StyleGAN2 for image style-mixing and morphing above. When we mix middle styles from B, the original full-size model has a significant identity loss, while our approach better preserves the person’s identity. We also observe that our morphed images have a smoother expression transition compared the full-size model in the beard, substantiating our advantage in latent space smoothness.

We provide an additional example above.

Methodology

In our work, we make the first attempt to bring content awareness into channel pruning and knowledge distillation.

Specifically, we leverage a content-parsing network to identify contents of interest (COI), a set of spatial locations with salient semantic concepts, within the generated images. We design a content-aware pruning metric (with a forward and backward path) to remove channels that are least sensitive to COI in the generated images. For knowledge distillation, we focus our distillation region only to COI of the teacher’s outputs which further enhances target contents’ distillation.

Usage

Prerequisite

We have tested our codes under the following environments:

python == 3.6.5
pytorch == 1.6.0
torchvision == 0.7.0
CUDA == 10.2

Pretrained Full-Size Generator Checkpoint

To start with, you can first download a full-size generator checkpoint from:

256px StyleGAN2

1024px StyleGAN2

and place it under the folder ./Model/full_size_model/.

Pruning

Once you get the full-size checkpoint, you can prune the generator by:

python3 prune.py \
	--generated_img_size=256 \
	--ckpt=/path/to/full/size/model/ \
	--remove_ratio=0.7 \
	--info_print

We adopt a uniform channel pruning ratio for every layer. Above procedure will remove 70% of channels from the generator in each layer. The pruned checkpoint will be saved at ./Model/pruned_model/.

Retraining

We then retrain the pruned generator by:

python3 train.py \
	--size=256 \
	--path=/path/to/ffhq/data/folder/ \
	--ckpt=/path/to/pruned/model/ \
	--teacher_ckpt=/path/to/full/size/model/ \
	--iter=450001 \
	--batch_size=16

You may adjust the variables gpu_device_ids and primary_device for the GPU setup in train_hyperparams.py.

Training Log

The time for retraining 11x-compressed models on V100 GPUs:

Model Batch Size Iterations # GPUs Time (Hour)
256px StyleGAN2 16 450k 2 131
1024px StyleGAN2 16 450k 4 251

A typical training curve for the 11x-compressed 256px StyleGAN2:

Evaluation

To evaluate the model quantitatively, we provide get_fid.py and get_ppl.py to get model's FID and PPL sores.

FID Evaluation:

python3 get_fid.py \
	--generated_img_size=256 \
	--ckpt=/path/to/model/ \
	--n_sample=50000 \
	--batch_size=64 \
	--info_print

PPL Evaluation:

python3 get_ppl.py \
	--generated_img_size=256 \
	--ckpt=/path/to/model/ \
	--n_sample=5000 \
	--eps=1e-4 \
	--info_print

We also provide an image projector which return a (real image, projected image) pair in Image_Projection_Visualization.png as well as the PSNR and LPIPS score between this pair:

python3 get_projected_image.py \
	--generated_img_size=256 \
	--ckpt=/path/to/model/ \
	--image_file=/path/to/an/RGB/image/ \
	--num_iters=800 \
	--info_print

An example of Image_Projection_Visualization.png projected by a full-size 256px StyleGAN2:

Helen-Set55

We provide the Helen-Set55 on Google Drive.

11x-Accelerated Generator Checkpoint

We provide the following checkpoints of our content-aware compressed StyleGAN2:

Compressed 256px StyleGAN2

Compressed 1024px StyleGAN2

Acknowledgement

PyTorch StyleGAN2: https://github.com/rosinality/stylegan2-pytorch

Face Parsing BiSeNet: https://github.com/zllrunning/face-parsing.PyTorch

Fréchet Inception Distance: https://github.com/mseitzer/pytorch-fid

Learned Perceptual Image Patch Similarity: https://github.com/richzhang/PerceptualSimilarity

Owner
Yuchen Liu, Ph.D. Candidate at Princeton University
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

HEP Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior Implementation Python3 PyTorch=1.0 NVIDIA GPU+CUDA Training process The

FengZhang 34 Dec 04, 2022
METER: Multimodal End-to-end TransformER

METER Code and pre-trained models will be publicized soon. Citation @article{dou2021meter, title={An Empirical Study of Training End-to-End Vision-a

Zi-Yi Dou 257 Jan 06, 2023
Pytorch cuda extension of grid_sample1d

Grid Sample 1d pytorch cuda extension of grid sample 1d. Since pytorch only supports grid sample 2d/3d, I extend the 1d version for efficiency. The fo

lyricpoem 24 Dec 03, 2022
This is a clean and robust Pytorch implementation of DQN and Double DQN.

DQN/DDQN-Pytorch This is a clean and robust Pytorch implementation of DQN and Double DQN. Here is the training curve: All the experiments are trained

XinJingHao 15 Dec 27, 2022
A Distributional Approach To Controlled Text Generation

A Distributional Approach To Controlled Text Generation This is the repository code for the ICLR 2021 paper "A Distributional Approach to Controlled T

NAVER 102 Jan 07, 2023
Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite.

TFLite-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite. Stereo depth estimati

Ibai Gorordo 4 Feb 14, 2022
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 51 Jan 06, 2023
Cobalt Strike teamserver detection.

Cobalt-Strike-det Cobalt Strike teamserver detection. usage: cobaltstrike_verify.py [-l TARGETS] [-t THREADS] optional arguments: -h, --help show this

TimWhite 17 Sep 27, 2022
"Segmenter: Transformer for Semantic Segmentation" reproduced via mmsegmentation

Segmenter-based-on-OpenMMLab "Segmenter: Transformer for Semantic Segmentation, arxiv 2105.05633." reproduced via mmsegmentation. We reproduce Segment

EricKani 22 Feb 24, 2022
[ICCV 2021 Oral] PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers

PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers Created by Xumin Yu*, Yongming Rao*, Ziyi Wang, Zuyan Liu, Jiwen Lu, Jie Zhou

Xumin Yu 317 Dec 26, 2022
SpinalNet: Deep Neural Network with Gradual Input

SpinalNet: Deep Neural Network with Gradual Input This repository contains scripts for training different variations of the SpinalNet and its counterp

H M Dipu Kabir 142 Dec 30, 2022
Multi-modal Content Creation Model Training Infrastructure including the FACT model (AI Choreographer) implementation.

AI Choreographer: Music Conditioned 3D Dance Generation with AIST++ [ICCV-2021]. Overview This package contains the model implementation and training

Google Research 365 Dec 30, 2022
A framework that allows people to write their own Rocket League bots.

YOU PROBABLY SHOULDN'T PULL THIS REPO Bot Makers Read This! If you just want to make a bot, you don't need to be here. Instead, start with one of thes

543 Dec 20, 2022
QICK: Quantum Instrumentation Control Kit

QICK: Quantum Instrumentation Control Kit The QICK is a kit of firmware and software to use the Xilinx RFSoC to control quantum systems. It consists o

81 Dec 15, 2022
PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021)

Authors official PyTorch implementation of the "WarpedGANSpace: Finding non-linear RBF paths in GAN latent space" [ICCV 2021].

Christos Tzelepis 100 Dec 06, 2022
MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution

Octave Convolution MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution Imag

Meta Research 549 Dec 28, 2022
Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

TensorFlow implementation of 3D Convolutional Neural Networks for Speaker Verification - Official Project Page - Pytorch Implementation This repositor

Amirsina Torfi 753 Dec 17, 2022
The mini-AlphaStar (mini-AS, or mAS) - mini-scale version (non-official) of the AlphaStar (AS)

A mini-scale reproduction code of the AlphaStar program. Note: the original AlphaStar is the AI proposed by DeepMind to play StarCraft II.

Ruo-Ze Liu 216 Jan 04, 2023
Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021]

Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021] Paper: https://arxiv.org/abs/2104.11208 Introduction Despite the significa

76 Dec 07, 2022
A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21

ANEMONE A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21 Dependencies python==3.6.1 dgl==

Graph Analysis & Deep Learning Laboratory, GRAND 30 Dec 14, 2022