A Multi-modal Model Chinese Spell Checker Released on ACL2021.

Related tags

Deep LearningReaLiSe
Overview

ReaLiSe

ReaLiSe is a multi-modal Chinese spell checking model.

This the office code for the paper Read, Listen, and See: Leveraging Multimodal Information Helps Chinese Spell Checking.

The paper has been accepted in ACL Findings 2021.

Environment

  • Python: 3.6
  • Cuda: 10.0
  • Packages: pip install -r requirements.txt

Data

Raw Data

SIGHAN Bake-off 2013: http://ir.itc.ntnu.edu.tw/lre/sighan7csc.html
SIGHAN Bake-off 2014: http://ir.itc.ntnu.edu.tw/lre/clp14csc.html
SIGHAN Bake-off 2015: http://ir.itc.ntnu.edu.tw/lre/sighan8csc.html
Wang271K: https://github.com/wdimmy/Automatic-Corpus-Generation

Data Processing

The code and cleaned data are in the data_process directory.

You can also directly download the processed data from this and put them in the data directory. The data directory would look like this:

data
|- trainall.times2.pkl
|- test.sighan15.pkl
|- test.sighan15.lbl.tsv
|- test.sighan14.pkl
|- test.sighan14.lbl.tsv
|- test.sighan13.pkl
|- test.sighan13.lbl.tsv

Pretrain

  • BERT: chinese-roberta-wwm-ext

    Huggingface hfl/chinese-roberta-wwm-ext: https://huggingface.co/hfl/chinese-roberta-wwm-ext
    Local: /data/dobby_ceph_ir/neutrali/pretrained_models/roberta-base-ch-for-csc/

  • Phonetic Encoder: pretrain_pho.sh

  • Graphic Encoder: pretrain_res.sh

  • Merge: merge.py

You can also directly download the pretrained and merged BERT, Phonetic Encoder, and Graphic Encoder from this, and put them in the pretrained directory:

pretrained
|- pytorch_model.bin
|- vocab.txt
|- config.json

Train

After preparing the data and pretrained model, you can train ReaLiSe by executing the train.sh script. Note that you should set up the PRETRAINED_DIR, DATE_DIR, and OUTPUT_DIR in it.

sh train.sh

Test

Test ReaLiSe using the test.sh script. You should set up the DATE_DIR, CKPT_DIR, and OUTPUT_DIR in it. CKPT_DIR is the OUTPUT_DIR of the training process.

sh test.sh

Well-trained Model

You can also download well-trained model from this direct using. The performance scores of RealiSe and some baseline models on the SIGHAN13, SIGHAN14, SIGHAN15 test set are here:

Methods

Metrics

  • "D" means "Detection Level", "C" means "Correction Level".
  • "A", "P", "R", "F" means "Accuracy", "Precision", "Recall", and "F1" respectively.

SIGHAN15

Method D-A D-P D-R D-F C-A C-P C-R C-F
FASpell 74.2 67.6 60.0 63.5 73.7 66.6 59.1 62.6
Soft-Masked BERT 80.9 73.7 73.2 73.5 77.4 66.7 66.2 66.4
SpellGCN - 74.8 80.7 77.7 - 72.1 77.7 75.9
BERT 82.4 74.2 78.0 76.1 81.0 71.6 75.3 73.4
ReaLiSe 84.7 77.3 81.3 79.3 84.0 75.9 79.9 77.8

SIGHAN14

Method D-A D-P D-R D-F C-A C-P C-R C-F
Pointer Network - 63.2 82.5 71.6 - 79.3 68.9 73.7
SpellGCN - 65.1 69.5 67.2 - 63.1 67.2 65.3
BERT 75.7 64.5 68.6 66.5 74.6 62.4 66.3 64.3
ReaLiSe 78.4 67.8 71.5 69.6 77.7 66.3 70.0 68.1

SIGHAN13

Method D-A D-P D-R D-F C-A C-P C-R C-F
FASpell 63.1 76.2 63.2 69.1 60.5 73.1 60.5 66.2
SpellGCN 78.8 85.7 78.8 82.1 77.8 84.6 77.8 81.0
BERT 77.0 85.0 77.0 80.8 77.4 83.0 75.2 78.9
ReaLiSe 82.7 88.6 82.5 85.4 81.4 87.2 81.2 84.1

Citation

@misc{xu2021read,
      title={Read, Listen, and See: Leveraging Multimodal Information Helps Chinese Spell Checking}, 
      author={Heng-Da Xu and Zhongli Li and Qingyu Zhou and Chao Li and Zizhen Wang and Yunbo Cao and Heyan Huang and Xian-Ling Mao},
      year={2021},
      eprint={2105.12306},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Owner
DaDa
A student majoring in Computer Science in BIT.
DaDa
Code repo for "FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation" (ICCV 2021)

FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation (ICCV 2021) This repository contains the implementation of th

Yuhang Zang 21 Dec 17, 2022
Individual Treatment Effect Estimation

CAPE Individual Treatment Effect Estimation Run CAPE python train_causal.py --loop 10 -m cape_cau -d NI --i_t 1 Run a baseline model python train_cau

S. Deng 4 Sep 02, 2022
Anagram Generator in Python

Anagrams Generator This is a program for computing multiword anagrams. It makes no effort to come up with sentences that make sense; it only finds ana

Day Fundora 5 Nov 17, 2022
Repository for the electrical and ICT benchmark model developed in the ERIGrid 2.0 project.

Benchmark Model Electrical and ICT System This repository contains the documentation, code, and models for the electrical and ICT benchmark model deve

ERIGrid 2.0 1 Nov 29, 2021
Dahua Camera and Doorbell Home Assistant Integration

Home Assistant Dahua Integration The Dahua Home Assistant integration allows you to integrate your Dahua cameras and doorbells in Home Assistant. It's

Ronnie 216 Dec 26, 2022
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
Implementation of ConvMixer in TensorFlow and Keras

ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in that it operates directly on

Sayan Nath 8 Oct 03, 2022
Simulation of moving particles under microscopic imaging

Simulation of moving particles under microscopic imaging Install scipy numpy scikit-image tiffile Run python simulation.py Read result https://imagej

Zehao Wang 2 Dec 14, 2021
Pytorch implementation of various High Dynamic Range (HDR) Imaging algorithms

Deep High Dynamic Range Imaging Benchmark This repository is the pytorch impleme

Tianhong Dai 5 Nov 16, 2022
Cookiecutter PyTorch Lightning

Cookiecutter PyTorch Lightning Instructions # install cookiecutter pip install cookiecutter

Mazen 8 Nov 06, 2022
GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification

GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification This is the official pytorch implementation of t

Alibaba Cloud 5 Nov 14, 2022
A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries.

Yolo-Powered-Detector A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries

Luke Wilson 1 Dec 03, 2021
A large dataset of 100k Google Satellite and matching Map images, resembling pix2pix's Google Maps dataset.

Larger Google Sat2Map dataset This dataset extends the aerial ⟷ Maps dataset used in pix2pix (Isola et al., CVPR17). The provide script download_sat2m

34 Dec 28, 2022
ML models and internal tensors 3D visualizer

The free Zetane Viewer is a tool to help understand and accelerate discovery in machine learning and artificial neural networks. It can be used to ope

Zetane Systems 787 Dec 30, 2022
python 93% acc. CNN Dogs Vs Cats ( Pytorch )

English | 简体中文(测试中...敬请期待) Cnn-Classification-Dog-Vs-Cat 猫狗辨别 (pytorch版本) CNN Resnet18 的猫狗分类器,基于ResNet及其变体网路系列,对于一般的图像识别任务表现优异,模型精准度高达93%(小型样本)。 项目制作于

apple ye 1 May 22, 2022
A GUI to automatically create a TOPAS-readable MLC simulation file

Python script to create a TOPAS-readable simulation file descriring a Multi-Leaf-Collimator. Builds the MLC using the data from a 3D .stl file.

Sebastian Schäfer 0 Jun 19, 2022
Diverse Object-Scene Compositions For Zero-Shot Action Recognition

Diverse Object-Scene Compositions For Zero-Shot Action Recognition This repository contains the source code for the use of object-scene compositions f

7 Sep 21, 2022
Visual Question Answering in Pytorch

Visual Question Answering in pytorch /!\ New version of pytorch for VQA available here: https://github.com/Cadene/block.bootstrap.pytorch This repo wa

Remi 672 Jan 01, 2023
Official tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”

Tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”.

3.7k Dec 31, 2022
🛠️ Tools for Transformers compression using Lightning ⚡

Bert-squeeze is a repository aiming to provide code to reduce the size of Transformer-based models or decrease their latency at inference time.

Jules Belveze 66 Dec 11, 2022