A Multi-modal Model Chinese Spell Checker Released on ACL2021.

Related tags

Deep LearningReaLiSe
Overview

ReaLiSe

ReaLiSe is a multi-modal Chinese spell checking model.

This the office code for the paper Read, Listen, and See: Leveraging Multimodal Information Helps Chinese Spell Checking.

The paper has been accepted in ACL Findings 2021.

Environment

  • Python: 3.6
  • Cuda: 10.0
  • Packages: pip install -r requirements.txt

Data

Raw Data

SIGHAN Bake-off 2013: http://ir.itc.ntnu.edu.tw/lre/sighan7csc.html
SIGHAN Bake-off 2014: http://ir.itc.ntnu.edu.tw/lre/clp14csc.html
SIGHAN Bake-off 2015: http://ir.itc.ntnu.edu.tw/lre/sighan8csc.html
Wang271K: https://github.com/wdimmy/Automatic-Corpus-Generation

Data Processing

The code and cleaned data are in the data_process directory.

You can also directly download the processed data from this and put them in the data directory. The data directory would look like this:

data
|- trainall.times2.pkl
|- test.sighan15.pkl
|- test.sighan15.lbl.tsv
|- test.sighan14.pkl
|- test.sighan14.lbl.tsv
|- test.sighan13.pkl
|- test.sighan13.lbl.tsv

Pretrain

  • BERT: chinese-roberta-wwm-ext

    Huggingface hfl/chinese-roberta-wwm-ext: https://huggingface.co/hfl/chinese-roberta-wwm-ext
    Local: /data/dobby_ceph_ir/neutrali/pretrained_models/roberta-base-ch-for-csc/

  • Phonetic Encoder: pretrain_pho.sh

  • Graphic Encoder: pretrain_res.sh

  • Merge: merge.py

You can also directly download the pretrained and merged BERT, Phonetic Encoder, and Graphic Encoder from this, and put them in the pretrained directory:

pretrained
|- pytorch_model.bin
|- vocab.txt
|- config.json

Train

After preparing the data and pretrained model, you can train ReaLiSe by executing the train.sh script. Note that you should set up the PRETRAINED_DIR, DATE_DIR, and OUTPUT_DIR in it.

sh train.sh

Test

Test ReaLiSe using the test.sh script. You should set up the DATE_DIR, CKPT_DIR, and OUTPUT_DIR in it. CKPT_DIR is the OUTPUT_DIR of the training process.

sh test.sh

Well-trained Model

You can also download well-trained model from this direct using. The performance scores of RealiSe and some baseline models on the SIGHAN13, SIGHAN14, SIGHAN15 test set are here:

Methods

Metrics

  • "D" means "Detection Level", "C" means "Correction Level".
  • "A", "P", "R", "F" means "Accuracy", "Precision", "Recall", and "F1" respectively.

SIGHAN15

Method D-A D-P D-R D-F C-A C-P C-R C-F
FASpell 74.2 67.6 60.0 63.5 73.7 66.6 59.1 62.6
Soft-Masked BERT 80.9 73.7 73.2 73.5 77.4 66.7 66.2 66.4
SpellGCN - 74.8 80.7 77.7 - 72.1 77.7 75.9
BERT 82.4 74.2 78.0 76.1 81.0 71.6 75.3 73.4
ReaLiSe 84.7 77.3 81.3 79.3 84.0 75.9 79.9 77.8

SIGHAN14

Method D-A D-P D-R D-F C-A C-P C-R C-F
Pointer Network - 63.2 82.5 71.6 - 79.3 68.9 73.7
SpellGCN - 65.1 69.5 67.2 - 63.1 67.2 65.3
BERT 75.7 64.5 68.6 66.5 74.6 62.4 66.3 64.3
ReaLiSe 78.4 67.8 71.5 69.6 77.7 66.3 70.0 68.1

SIGHAN13

Method D-A D-P D-R D-F C-A C-P C-R C-F
FASpell 63.1 76.2 63.2 69.1 60.5 73.1 60.5 66.2
SpellGCN 78.8 85.7 78.8 82.1 77.8 84.6 77.8 81.0
BERT 77.0 85.0 77.0 80.8 77.4 83.0 75.2 78.9
ReaLiSe 82.7 88.6 82.5 85.4 81.4 87.2 81.2 84.1

Citation

@misc{xu2021read,
      title={Read, Listen, and See: Leveraging Multimodal Information Helps Chinese Spell Checking}, 
      author={Heng-Da Xu and Zhongli Li and Qingyu Zhou and Chao Li and Zizhen Wang and Yunbo Cao and Heyan Huang and Xian-Ling Mao},
      year={2021},
      eprint={2105.12306},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Owner
DaDa
A student majoring in Computer Science in BIT.
DaDa
An implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional Neural Network"

Retina Blood Vessels Segmentation This is an implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional

Srijarko Roy 23 Aug 20, 2022
Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe

Benoit Brummer 6 Jun 16, 2022
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

44 Sep 15, 2022
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
Ground truth data for the Optical Character Recognition of Historical Classical Commentaries.

OCR Ground Truth for Historical Commentaries The dataset OCR ground truth for historical commentaries (GT4HistComment) was created from the public dom

Ajax Multi-Commentary 3 Sep 08, 2022
网络协议2天集训

网络协议2天集训 抓包工具安装 Wireshark wireshark下载地址 Tcpdump CentOS yum install tcpdump -y Ubuntu apt-get install tcpdump -y k8s抓包测试环境 查看虚拟网卡veth pair 查看

120 Dec 12, 2022
CMP 414/765 course repository for Spring 2022 semester

CMP414/765: Artificial Intelligence Spring2021 This is the GitHub repository for course CMP 414/765: Artificial Intelligence taught at The City Univer

ch00226855 4 May 16, 2022
AAAI-22 paper: SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning

SimSR Code and dataset for the paper SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning (AAAI-22). Requirements We assum

7 Dec 19, 2022
PyTorch implementation of our method for adversarial attacks and defenses in hyperspectral image classification.

Self-Attention Context Network for Hyperspectral Image Classification PyTorch implementation of our method for adversarial attacks and defenses in hyp

22 Dec 02, 2022
Code, pre-trained models and saliency results for the paper "Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB Images".

Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB This repository is the official implementation of the paper. Our results comming soon in

Xiaoqiang Wang 8 May 22, 2022
Implementation of CVPR'2022:Surface Reconstruction from Point Clouds by Learning Predictive Context Priors

Surface Reconstruction from Point Clouds by Learning Predictive Context Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository c

136 Dec 12, 2022
An exploration of log domain "alternative floating point" for hardware ML/AI accelerators.

This repository contains the SystemVerilog RTL, C++, HLS (Intel FPGA OpenCL to wrap RTL code) and Python needed to reproduce the numerical results in

Facebook Research 373 Dec 31, 2022
An open source Jetson Nano baseboard and tools to design your own.

My Jetson Nano Baseboard This basic baseboard gives the user the foundation and the flexibility to design their own baseboard for the Jetson Nano. It

NVIDIA AI IOT 57 Dec 29, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling @ INTERSPEECH 2021 Accepted

NU-Wave — Official PyTorch Implementation NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling Junhyeok Lee, Seungu Han @ MINDsLab Inc

MINDs Lab 242 Dec 23, 2022
MQBench: Towards Reproducible and Deployable Model Quantization Benchmark

MQBench: Towards Reproducible and Deployable Model Quantization Benchmark We propose a benchmark to evaluate different quantization algorithms on vari

494 Dec 29, 2022
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 01, 2023
Code for CVPR 2021 paper: Anchor-Free Person Search

Introduction This is the implementationn for Anchor-Free Person Search in CVPR2021 License This project is released under the Apache 2.0 license. Inst

158 Jan 04, 2023
Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)

ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation

97 Dec 17, 2022
Finetune SSL models for MOS prediction

Finetune SSL models for MOS prediction This is code for our paper under review for ICASSP 2022: "Generalization Ability of MOS Prediction Networks" Er

Yamagishi and Echizen Laboratories, National Institute of Informatics 32 Nov 22, 2022
2D Human Pose estimation using transformers. Implementation in Pytorch

PE-former: Pose Estimation Transformer Vision transformer architectures perform very well for image classification tasks. Efforts to solve more challe

Panteleris Paschalis 23 Oct 17, 2022