🛠️ Tools for Transformers compression using Lightning ⚡

Overview

Hits

Bert-squeeze

Bert-squeeze is a repository aiming to provide code to reduce the size of Transformer-based models or decrease their latency at inference time.

It gathers a non-exhaustive list of techniques such as distillation, pruning, quantization, early-exiting. The repo is written using PyTorch Lightning and Transformers.

About the project

As a heavy user of transformer-based models (which are truly amazing from my point of view) I always struggled to put those heavy models in production while having a decent inference speed. There are of course a bunch of existing libraries to optimize and compress transformer-based models (ONNX , distiller, compressors , KD_Lib, ... ).
I started this project because of the need to reduce the latency of models integrating transformers as subcomponents. For this reason, this project aims at providing implementations to train various transformer-based models (and others) using PyTorch Lightning but also to distill, prune, and quantize models.
I chose to write this repo with Lightning because of its growing trend, its flexibility, and the very few repositories using it. It currently only handles sequence classification models, but support for other tasks and custom architectures is planned.

Installation

First download the repository:

git clone https://github.com/JulesBelveze/bert-squeeze.git

and then install dependencies using poetry:

poetry install

You are all set!

Quickstarts

You can find a bunch of already prepared configurations under the examples folder. Just choose the one you need and run the following:

python3 -m bert-squeeze.main -cp=examples -cn=wanted_config

Disclaimer: I have not extensively tested all procedures and thus do not guarantee the performance of every implemented method.

Concepts

Transformers

If you never heard of it then I can only recommend you to read this amazing blog post and if you want to dig deeper there is this awesome lecture was given by Stanford available here.

Distillation

The idea of distillation is to train a small network to mimic a big network by trying to replicate its outputs. The repository provides the ability to transfer knowledge from any model to any other (if you need a model that is not within the models folder just write your own).

The repository also provides the possibility to perform soft-distillation or hard-distillation on an unlabeled dataset. In the soft case, we use the probabilities of the teacher as a target. In the hard one, we assume that the teacher's predictions are the actual label.

You can find these implementations under the distillation/ folder.

Quantization

Neural network quantization is the process of reducing the weights precision in the neural network. The repo has two callbacks one for dynamic quantization and one for quantization-aware training (using the Lightning callback) .

You can find those implementations under the utils/callbacks/ folder.

Pruning

Pruning neural networks consist of removing weights from trained models to compress them. This repo features various pruning implementations and methods such as head-pruning, layer dropping, and weights dropping.

You can find those implementations under the utils/callbacks/ folder.

Contributions and questions

If you are missing a feature that could be relevant to this repo, or a bug that you noticed feel free to open a PR or open an issue. As you can see in the roadmap there are a bunch more features to come 😃

Also, if you have any questions or suggestions feel free to ask!

References

  1. Alammar, J (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/
  2. stanfordonline (2021) Stanford CS224N NLP with Deep Learning | Winter 2021 | Lecture 9 - Self- Attention and Transformers. [online video] Available at: https://www.youtube.com/watch?v=ptuGllU5SQQ
  3. Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Jamie Brew (2019). HuggingFace's Transformers: State-of-the-art Natural Language Processing
  4. Hassan Sajjad and Fahim Dalvi and Nadir Durrani and Preslav Nakov (2020). Poor Man's BERT Smaller and Faster Transformer Models
  5. Angela Fan and Edouard Grave and Armand Joulin (2019). Reducing Transformer Depth on Demand with Structured Dropout
  6. Paul Michel and Omer Levy and Graham Neubig (2019). Are Sixteen Heads Really Better than One?
  7. Fangxiaoyu Feng and Yinfei Yang and Daniel Cer and Naveen Arivazhagan and Wei Wang (2020). Language-agnostic BERT Sentence Embedding
Owner
Jules Belveze
AI craftsman | NLP | MLOps
Jules Belveze
Reinforcement Learning for the Blackjack

Reinforcement Learning for Blackjack Author: ZHA Mengyue Math Department of HKUST Problem Statement We study playing Blackjack by reinforcement learni

Dolores 3 Jan 24, 2022
PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR)

This is a PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR), using subpixel convolution to optimize the inference speed of TecoGAN VSR model. Please refer to the offi

789 Jan 04, 2023
Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks

SSTNet Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks(ICCV2021) by Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui J

83 Nov 29, 2022
[Official] Exploring Temporal Coherence for More General Video Face Forgery Detection(ICCV 2021)

Exploring Temporal Coherence for More General Video Face Forgery Detection(FTCN) Yinglin Zheng, Jianmin Bao, Dong Chen, Ming Zeng, Fang Wen Accepted b

57 Dec 28, 2022
Privacy as Code for DSAR Orchestration: Privacy Request automation to fulfill GDPR, CCPA, and LGPD data subject requests.

Meet Fidesops: Privacy as Code for DSAR Orchestration A part of the greater Fides ecosystem. ⚡ Overview Fidesops (fee-dez-äps, combination of the Lati

Ethyca 44 Dec 06, 2022
Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)

Causality In Traffic Accident (Under Construction) Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020) Overview Data Prepa

Tackgeun 21 Nov 20, 2022
Benchmarks for the Optimal Power Flow Problem

Power Grid Lib - Optimal Power Flow This benchmark library is curated and maintained by the IEEE PES Task Force on Benchmarks for Validation of Emergi

A Library of IEEE PES Power Grid Benchmarks 207 Dec 08, 2022
Cortex-compatible model server for Python and TensorFlow

Nucleus model server Nucleus is a model server for TensorFlow and generic Python models. It is compatible with Cortex clusters, Kubernetes clusters, a

Cortex Labs 14 Nov 27, 2022
MGFN: Multi-Graph Fusion Networks for Urban Region Embedding was accepted by IJCAI-2022.

Multi-Graph Fusion Networks for Urban Region Embedding (IJCAI-22) This is the implementation of Multi-Graph Fusion Networks for Urban Region Embedding

202 Nov 18, 2022
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
[BMVC 2021] Official PyTorch Implementation of Self-supervised learning of Image Scale and Orientation Estimation

Self-Supervised Learning of Image Scale and Orientation Estimation (BMVC 2021) This is the official implementation of the paper "Self-Supervised Learn

Jongmin Lee 17 Nov 10, 2022
Google AI Open Images - Object Detection Track: Open Solution

Google AI Open Images - Object Detection Track: Open Solution This is an open solution to the Google AI Open Images - Object Detection Track 😃 More c

minerva.ml 46 Jun 22, 2022
Forecasting with Gradient Boosted Time Series Decomposition

ThymeBoost ThymeBoost combines time series decomposition with gradient boosting to provide a flexible mix-and-match time series framework for spicy fo

131 Jan 08, 2023
Implementation supporting the ICCV 2017 paper "GANs for Biological Image Synthesis"

GANs for Biological Image Synthesis This codes implements the ICCV-2017 paper "GANs for Biological Image Synthesis". The paper and its supplementary m

Anton Osokin 95 Nov 25, 2022
An example of time series augmentation methods with Keras

Time Series Augmentation This is a collection of time series data augmentation methods and an example use using Keras. News 2020/04/16: Repository Cre

九州大学 ヒューマンインタフェース研究室 229 Jan 02, 2023
Mmdet benchmark with python

mmdet_benchmark 本项目是为了研究 mmdet 推断性能瓶颈,并且对其进行优化。 配置与环境 机器配置 CPU:Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz GPU:NVIDIA GeForce RTX 3080 10GB 内存:64G 硬盘:1T

杨培文 (Yang Peiwen) 24 May 21, 2022
ZeroGen: Efficient Zero-shot Learning via Dataset Generation

ZEROGEN This repository contains the code for our paper “ZeroGen: Efficient Zero

Jiacheng Ye 31 Dec 30, 2022
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer

HV-plane reconstruction from a single 360 image Code for our paper in CVPR 2021: Indoor Panorama Planar 3D Reconstruction via Divide and Conquer (pape

sunset 36 Jan 03, 2023
Code for Learning Manifold Patch-Based Representations of Man-Made Shapes, in ICLR 2021.

LearningPatches | Webpage | Paper | Video Learning Manifold Patch-Based Representations of Man-Made Shapes Dmitriy Smirnov, Mikhail Bessmeltsev, Justi

Dima Smirnov 22 Nov 14, 2022
3D-printable hand-strapped keyboard

Note: This repo has not been cleaned up and prepared for general consumption at all. This is just a dump of the project files. If there is any interes

Wojciech Baranowski 41 Dec 31, 2022