3D Generative Adversarial Network

Overview

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

This repository contains pre-trained models and sampling code for the 3D Generative Adversarial Network (3D-GAN) presented at NIPS 2016.

http://3dgan.csail.mit.edu

Prerequisites

Torch

We use Torch 7 (http://torch.ch) for our implementation with these additional packages:

Visualization

  • Basic visualization: MATLAB (tested on R2016b)
  • Advanced visualization: Python 2.7 with package numpy, matplotlib, scipy and vtk (version 5.10.1)

Note: for advanced visualization, the version of vtk has to be 5.10.1, not above. It is available in the package list of common Python distributions like Anaconda

Installation

Our current release has been tested on Ubuntu 14.04.

Cloning the repository

git clone [email protected]:zck119/3dgan-release.git
cd 3dgan-release

Downloading pretrained models

For CPU (947 MB):

./download_models_cpu.sh

For GPU (618 MB):

./download_models_gpu.sh

Downloading latent vector inputs for demo

./download_demo_inputs.sh

Guide

Synthesizing shapes (main.lua)

We show how to synthesize shapes with our pre-trained models. The file (main.lua) has the following options.

  • -gpu ID: GPU ID (starting from 1). Set to 0 to use CPU only.
  • -class CLASSNAME: synthesize shapes for the class CLASSNAME. We currently support five classes (car, chair, desk, gun, and sofa). Use all to generate shapes for each class.
  • -sample: whether to sample input latent vectors from an i.i.d. uniform distribution, or to generate shapes with demo vectors loaded from ./demo_inputs/CLASSNAME.mat
  • -bs BATCH_SIZE: use batch size of BATCH_SIZE during network forwarding
  • -ss SAMPLE_SIZE: set the number of generated shapes to SAMPLE_SIZE. This option is only available in -sample mode.

Usages include

  • Synthesize chairs with pre-sampled demo inputs and a CPU
th main.lua -gpu 0 -class chair 
  • Randomly sample 150 desks with GPU 1 and a batch size of 50
th main.lua -gpu 1 -class desk -bs 50 -sample -ss 150 
  • Randomly sample 150 shapes of each category with GPU 1 and a batch size of 50
th main.lua -gpu 1 -class all -bs 50 -sample -ss 150 

The output is saved under folder ./output, with class_name_demo.mat for shapes generated by predetermined demo inputs (z in our paper), and class_name_sample.mat for randomly sampled 3D shapes. The variable inputs in the .mat file correponds to the input latent representation, and the variable voxels corresponds to the generated 3D shapes by our network.

Visualization

We offer two ways of visualizing results, one in MATLAB and the other in Python. We used the Python visualization in our paper. The MATLAB visualization is easier to install and run, but its output has a lower quality compared with the Python one.

MATLAB: Please use the function visualization/matlab/visualize.m for visualization. The MATLAB code allows users to either display rendered objects or save them as images. The script also supports downsampling and thresholding for faster rendering. The color of voxels represents the confidence value.

Options include

  • inputfile: the .mat file that saves the voxel matrices
  • indices: the indices of objects in the inputfile that should be rendered. The default value is 0, which stands for rendering all objects.
  • step (s): downsample objects via a max pooling of step s for efficiency. The default value is 4 (64 x 64 x 64 -> 16 x 16 x 16).
  • threshold: voxels with confidence lower than the threshold are not displayed
  • outputprefix:
    • when not specified, Matlab shows figures directly.
    • when specified, Matlab stores rendered images of objects at outputprefix_%i.bmp, where %i is the index of objects

Usage (after running th main.lua -gpu 0 -class chair, in MATLAB, in folder visualization/matlab):

visualize('../../output/chair_demo.mat', 0, 2, 0.1, 'chair')

The visualization might take a while. The obtained rendering (chair_1/3/4/5.bmp) should look as follows.

Python: Options for the Python visualization include

  • -t THRESHOLD: voxels with confidence lower than the threshold are not displayed. The default value is 0.1.
  • -i ID: the index of objects in the inputfile that should be rendered (one based). The default value is 1.
  • -df STEPSIZE: downsample objects via a max pooling of step STEPSIZE for efficiency. Currently supporting STEPSIZE 1, 2, and 4. The default value is 1 (i.e. no downsampling).
  • -dm METHOD: downsample method, where mean stands for average pooling and max for max pooling. The default is max pooling.
  • -u BLOCK_SIZE: set the size of the voxels to BLOCK_SIZE. The default value is 0.9.
  • -cm: whether to use a colormap to represent voxel occupancy, or to use a uniform color
  • -mc DISTANCE: whether to keep only the maximal connected component, where voxels of distance no larger than DISTANCE are considered connected. Set to 0 to disable this function. The default value is 3.

Usage:

python visualize.py chair_demo.mat -u 0.9 -t 0.1 -i 1 -mc 2

Reference

@inproceedings{3dgan,
  title={{Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling}},
  author={Wu, Jiajun and Zhang, Chengkai and Xue, Tianfan and Freeman, William T and Tenenbaum, Joshua B},
  booktitle={Advances In Neural Information Processing Systems},
  pages={82--90},
  year={2016}
}

For any questions, please contact Jiajun Wu ([email protected]) and Chengkai Zhang ([email protected]).

Koç University deep learning framework.

Knet Knet (pronounced "kay-net") is the Koç University deep learning framework implemented in Julia by Deniz Yuret and collaborators. It supports GPU

1.4k Dec 31, 2022
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
[SIGGRAPH'22] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets

[Project] [PDF] This repository contains code for our SIGGRAPH'22 paper "StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets" by Axel Sauer, Katja

742 Jan 04, 2023
An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow implementation of SERank model. The code is developed based on TF-Ranking.

SERank An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow

Zhihu 44 Oct 20, 2022
Neural network for digit classification powered by cuda

cuda_nn_mnist Neural network library for digit classification powered by cuda Resources The library was built to work with MNIST dataset. python-mnist

Nikita Ardashev 1 Dec 20, 2021
The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.

Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network

19 Dec 04, 2022
pytorch implementation of the ICCV'21 paper "MVTN: Multi-View Transformation Network for 3D Shape Recognition"

MVTN: Multi-View Transformation Network for 3D Shape Recognition (ICCV 2021) By Abdullah Hamdi, Silvio Giancola, Bernard Ghanem Paper | Video | Tutori

Abdullah Hamdi 64 Jan 03, 2023
Type4Py: Deep Similarity Learning-Based Type Inference for Python

Type4Py: Deep Similarity Learning-Based Type Inference for Python This repository contains the implementation of Type4Py and instructions for re-produ

Software Analytics Lab 45 Dec 15, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
Official PyTorch implementation of RIO

Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection Figure 1: Our proposed Resampling at image-level and obect-

NVIDIA Research Projects 17 May 20, 2022
Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

El Bruno 3 Mar 30, 2022
Source code for "Interactive All-Hex Meshing via Cuboid Decomposition [SIGGRAPH Asia 2021]".

Interactive All-Hex Meshing via Cuboid Decomposition Video demonstration This repository contains an interactive software to the PolyCube-based hex-me

Lingxiao Li 131 Dec 05, 2022
NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs.

NAS-HPO-Bench-II API Overview NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs. It helps a fair and low-

yoichi hirose 8 Nov 21, 2022
Real-Time and Accurate Full-Body Multi-Person Pose Estimation&Tracking System

News! Aug 2020: v0.4.0 version of AlphaPose is released! Stronger tracking! Include whole body(face,hand,foot) keypoints! Colab now available. Dec 201

Machine Vision and Intelligence Group @ SJTU 6.7k Dec 28, 2022
A foreign language learning aid using a neural network to predict probability of translating foreign words

Langy Langy is a reading-focused foreign language learning aid orientated towards young children. Reading is an activity that every child knows. It is

Shona Lowden 6 Nov 17, 2021
Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets).

TOQ-Nets-PyTorch-Release Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets). Temporal and Object Quantification Net

Zhezheng Luo 9 Jun 30, 2022
Official PyTorch implementation of the ICRA 2021 paper: Adversarial Differentiable Data Augmentation for Autonomous Systems.

Adversarial Differentiable Data Augmentation This repository provides the official PyTorch implementation of the ICRA 2021 paper: Adversarial Differen

Manli 3 Oct 15, 2022
Recurrent Variational Autoencoder that generates sequential data implemented with pytorch

Pytorch Recurrent Variational Autoencoder Model: This is the implementation of Samuel Bowman's Generating Sentences from a Continuous Space with Kim's

Daniil Gavrilov 347 Nov 14, 2022
A CROSS-MODAL FUSION NETWORK BASED ON SELF-ATTENTION AND RESIDUAL STRUCTURE FOR MULTIMODAL EMOTION RECOGNITION

CFN-SR A CROSS-MODAL FUSION NETWORK BASED ON SELF-ATTENTION AND RESIDUAL STRUCTURE FOR MULTIMODAL EMOTION RECOGNITION The audio-video based multimodal

skeleton 15 Sep 26, 2022