Minimal implementation and experiments of "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging".

Overview

No-Transaction Band Network:
A Neural Network Architecture for Efficient Deep Hedging

Open In Colab

Minimal implementation and experiments of "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging".

Hedging and pricing financial derivatives while taking into account transaction costs is a tough task. Since the hedging optimization is computationally expensive or even inaccessible, risk premiums of derivatives are often overpriced. This problem prevents the liquid offering of financial derivatives.

Our proposal, "No-Transaction Band Network", enables precise hedging with much fewer simulations. This improvement leads to the offering of cheaper risk premiums and thus liquidizes the derivative market. We believe that our proposal brings the data-driven derivative business via "Deep Hedging" much closer to practical applications.

Summary

  • Deep Hedging is a deep learning-based framework to hedge financial derivatives.
  • However, a hedging strategy is hard to train due to the action dependence, i.e., an appropriate hedging action at the next step depends on the current action.
  • We propose a "No-Transaction Band Network" to overcome this issue.
  • This network circumvents the action-dependence and facilitates quick and precise hedging.

Motivation and Result

Hedging financial derivatives (exotic options in particular) in the presence of transaction cost is a hard task.

In the absence of transaction cost, the perfect hedge is accessible based on the Black-Scholes model. The real market, in contrast, always involves transaction cost and thereby makes hedging optimization much more challenging. Since the analytic formulas (such as the Black-Scholes formula of European option) are no longer available in such a market, human traders may hedge and then price derivatives based on their experiences.

Deep Hedging is a ground-breaking framework to automate and optimize such operations. In this framework, a neural network is trained to hedge derivatives so that it minimizes a proper risk measure. However, training in deep hedging suffers difficulty of action dependence since an appropriate action at the next step depends on the current action.

So, we propose "No-Transaction Band Network" for efficient deep hedging. This architecture circumvents the complication to facilitate quick training and better hedging.

loss_lookback

The learning histories above demonstrate that the no-transaction band network can be trained much quicker than the ordinary feed-forward network (See our paper for details).

price_lookback

The figure above plots the derivative price (technically derivative price spreads, which are prices subtracted by that without transaction cost) as a function of the transaction cost. The no-transaction-band network attains cheaper prices than the ordinary network and an approximate analytic formula.

Proposed Architecture: No-Transaction Band Network

The following figures show the schematic diagrams of the neural network which was originally proposed in Deep Hedging (left) and the no-transaction band network (right).

nn

  • The original network:
    • The input of the neural network uses the current hedge ratio (δ_ti) as well as other information (I_ti).
    • Since the input includes the current action δ_ti, this network suffers the complication of action-dependence.
  • The no-transaction band network:
    • This architecture computes "no-transaction band" [b_l, b_u] by a neural network and then gets the next hedge ratio by clamping the current hedge ratio inside this band.
    • Since the input of the neural network does not use the current action, this architecture can circumvent the action-dependence and facilitate training.

Give it a Try!

Open In Colab

You can try out the efficacy of No-Transaction Band Network on a Jupyter Notebook: main.ipynb.

As you can see there, the no-transaction-band can be implemented by simply adding one special layer to an arbitrary neural network.

A comprehensive library for Deep Hedging, pfhedge, is available on PyPI.

References

  • Shota Imaki, Kentaro Imajo, Katsuya Ito, Kentaro Minami and Kei Nakagawa, "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging". arXiv:2103.01775 [q-fin.CP].
  • 今木翔太, 今城健太郎, 伊藤克哉, 南賢太郎, 中川慧, "効率的な Deep Hedging のためのニューラルネットワーク構造", 人工知能学 金融情報学研究会(SIG-FIN)第 26 回研究会.
  • Hans Bühler, Lukas Gonon, Josef Teichmann and Ben Wood, "Deep hedging". Quantitative Finance, 2019, 19, 1271–1291. arXiv:1609.05213 [q-fin.CP].
Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks

Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks Abstract Facial expression recognition in video

Bogireddy Sai Prasanna Teja Reddy 103 Dec 29, 2022
State-of-the-art data augmentation search algorithms in PyTorch

MuarAugment Description MuarAugment is a package providing the easiest way to a state-of-the-art data augmentation pipeline. How to use You can instal

43 Dec 12, 2022
Advanced Signal Processing Notebooks and Tutorials

Advanced Digital Signal Processing Notebooks and Tutorials Prof. Dr. -Ing. Gerald Schuller Jupyter Notebooks and Videos: Renato Profeta Applied Media

Guitars.AI 115 Dec 13, 2022
Dynamic Capacity Networks using Tensorflow

Dynamic Capacity Networks using Tensorflow Dynamic Capacity Networks (DCN; http://arxiv.org/abs/1511.07838) implementation using Tensorflow. DCN reduc

Taeksoo Kim 8 Feb 23, 2021
RIM: Reliable Influence-based Active Learning on Graphs.

RIM: Reliable Influence-based Active Learning on Graphs. This repository is the official implementation of RIM. Requirements To install requirements:

Wentao Zhang 4 Aug 29, 2022
Tiny Kinetics-400 for test

Kinetics-400迷你数据集 English | 简体中文 该数据集旨在解决的问题:参照Kinetics-400数据格式,训练基于自己数据的视频理解模型。 数据集介绍 Kinetics-400是视频领域benchmark常用数据集,详细介绍可以参考其官方网站Kinetics。整个数据集包含40

38 Jan 06, 2023
This code finds bounding box of a single human mouth.

This code finds bounding box of a single human mouth. In comparison to other face segmentation methods, it is relatively insusceptible to open mouth conditions, e.g., yawning, surgical robots, etc. T

iThermAI 4 Nov 27, 2022
PG2Net: Personalized and Group PreferenceGuided Network for Next Place Prediction

PG2Net PG2Net:Personalized and Group Preference Guided Network for Next Place Prediction Datasets Experiment results on two Foursquare check-in datase

Urban Mobility 5 Dec 20, 2022
Animal Sound Classification (Cats Vrs Dogs Audio Sentiment Classification)

this is a simple artificial neural network model using deep learning and torch-audio to classify cats and dog sounds.

crispengari 3 Dec 05, 2022
A different spin on dataclasses.

dataklasses Dataklasses is a library that allows you to quickly define data classes using Python type hints. Here's an example of how you use it: from

David Beazley 752 Nov 18, 2022
Source code for our EMNLP'21 paper 《Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning》

Child-Tuning Source code for EMNLP 2021 Long paper: Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning. 1. Environ

46 Dec 12, 2022
This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels].

CGPN This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels]. Req

10 Sep 12, 2022
A benchmark for the task of translation suggestion

WeTS: A Benchmark for Translation Suggestion Translation Suggestion (TS), which provides alternatives for specific words or phrases given the entire d

zhyang 55 Dec 24, 2022
PyTorch implementation of Algorithm 1 of "On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"

Code for On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models This repository will reproduce the main results from our pape

Mitch Hill 32 Nov 25, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
Conditional Gradients For The Approximately Vanishing Ideal

Conditional Gradients For The Approximately Vanishing Ideal Code for the paper: Wirth, E., and Pokutta, S. (2022). Conditional Gradients for the Appro

IOL Lab @ ZIB 0 May 25, 2022
Back to Event Basics: SSL of Image Reconstruction for Event Cameras

Back to Event Basics: SSL of Image Reconstruction for Event Cameras Minimal code for Back to Event Basics: Self-Supervised Learning of Image Reconstru

TU Delft 42 Dec 26, 2022
CUda Matrix Multiply library.

cumm CUda Matrix Multiply library. cumm is developed during learning of CUTLASS, which use too much c++ template and make code unmaintainable. So I de

49 Dec 27, 2022
This is the official implementation of Elaborative Rehearsal for Zero-shot Action Recognition (ICCV2021)

Elaborative Rehearsal for Zero-shot Action Recognition This is an official implementation of: Shizhe Chen and Dong Huang, Elaborative Rehearsal for Ze

DeLightCMU 26 Sep 24, 2022
A tool to estimate time varying instantaneous reproduction number during epidemics

EpiEstim A tool to estimate time varying instantaneous reproduction number during epidemics. It is described in the following paper: @article{Cori2013

MRC Centre for Global Infectious Disease Analysis 78 Dec 19, 2022