Implementation of our paper 'RESA: Recurrent Feature-Shift Aggregator for Lane Detection' in AAAI2021.

Related tags

Deep Learningresa
Overview

RESA

PyTorch implementation of the paper "RESA: Recurrent Feature-Shift Aggregator for Lane Detection".

Our paper has been accepted by AAAI2021.

Introduction

intro

  • RESA shifts sliced feature map recurrently in vertical and horizontal directions and enables each pixel to gather global information.
  • RESA achieves SOTA results on CULane and Tusimple Dataset.

Get started

  1. Clone the RESA repository

    git clone https://github.com/zjulearning/resa.git
    

    We call this directory as $RESA_ROOT

  2. Create a conda virtual environment and activate it (conda is optional)

    conda create -n resa python=3.8 -y
    conda activate resa
  3. Install dependencies

    # Install pytorch firstly, the cudatoolkit version should be same in your system. (you can also use pip to install pytorch and torchvision)
    conda install pytorch torchvision cudatoolkit=10.1 -c pytorch
    
    # Or you can install via pip
    pip install torch torchvision
    
    # Install python packages
    pip install -r requirements.txt
  4. Data preparation

    Download CULane and Tusimple. Then extract them to $CULANEROOT and $TUSIMPLEROOT. Create link to data directory.

    cd $RESA_ROOT
    mkdir -p data
    ln -s $CULANEROOT data/CULane
    ln -s $TUSIMPLEROOT data/tusimple

    For CULane, you should have structure like this:

    $CULANEROOT/driver_xx_xxframe    # data folders x6
    $CULANEROOT/laneseg_label_w16    # lane segmentation labels
    $CULANEROOT/list                 # data lists
    

    For Tusimple, you should have structure like this:

    $TUSIMPLEROOT/clips # data folders
    $TUSIMPLEROOT/lable_data_xxxx.json # label json file x4
    $TUSIMPLEROOT/test_tasks_0627.json # test tasks json file
    $TUSIMPLEROOT/test_label.json # test label json file
    
    

    For Tusimple, the segmentation annotation is not provided, hence we need to generate segmentation from the json annotation.

    python scripts/generate_seg_tusimple.py --root $TUSIMPLEROOT
    # this will generate seg_label directory
  5. Install CULane evaluation tools.

    This tools requires OpenCV C++. Please follow here to install OpenCV C++. Or just install opencv with command sudo apt-get install libopencv-dev

    Then compile the evaluation tool of CULane.

    cd $RESA_ROOT/runner/evaluator/culane/lane_evaluation
    make
    cd -

    Note that, the default opencv version is 3. If you use opencv2, please modify the OPENCV_VERSION := 3 to OPENCV_VERSION := 2 in the Makefile.

Training

For training, run

python main.py [configs/path_to_your_config] --gpus [gpu_ids]

For example, run

python main.py configs/culane.py --gpus 0 1 2 3

Testing

For testing, run

python main.py c[configs/path_to_your_config] --validate --load_from [path_to_your_model] [gpu_num]

For example, run

python main.py configs/culane.py --validate --load_from culane_resnet50.pth --gpus 0 1 2 3

python main.py configs/tusimple.py --validate --load_from tusimple_resnet34.pth --gpus 0 1 2 3

We provide two trained ResNet models on CULane and Tusimple, downloading our best performed model (Tusimple: GoogleDrive/BaiduDrive(code:s5ii), CULane: GoogleDrive/BaiduDrive(code:rlwj) )

Citation

@misc{zheng2020resa,
      title={RESA: Recurrent Feature-Shift Aggregator for Lane Detection}, 
      author={Tu Zheng and Hao Fang and Yi Zhang and Wenjian Tang and Zheng Yang and Haifeng Liu and Deng Cai},
      year={2020},
      eprint={2008.13719},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
A dataset for online Arabic calligraphy

Calliar Calliar is a dataset for Arabic calligraphy. The dataset consists of 2500 json files that contain strokes manually annotated for Arabic callig

ARBML 114 Dec 28, 2022
Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples

Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples This repository is the official implementation of paper [Qimera: Data-free Q

Kanghyun Choi 21 Nov 03, 2022
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

27 Dec 01, 2022
Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets).

TOQ-Nets-PyTorch-Release Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets). Temporal and Object Quantification Net

Zhezheng Luo 9 Jun 30, 2022
SphereFace: Deep Hypersphere Embedding for Face Recognition

SphereFace: Deep Hypersphere Embedding for Face Recognition By Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj and Le Song License SphereFa

Weiyang Liu 1.5k Dec 29, 2022
Implementation of "Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner"

Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner This repository is the official implementation of Meta-rPPG: Remote Heart Ra

Eugene Lee 137 Dec 13, 2022
A curated list of the top 10 computer vision papers in 2021 with video demos, articles, code and paper reference.

The Top 10 Computer Vision Papers of 2021 The top 10 computer vision papers in 2021 with video demos, articles, code, and paper reference. While the w

Louis-François Bouchard 118 Dec 21, 2022
Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt

Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt. This is done by

Mehdi Cherti 135 Dec 30, 2022
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022
High-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently.

TL;DR Ignite is a high-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently. Click on the image to

4.2k Jan 01, 2023
Code for the paper "Zero-shot Natural Language Video Localization" (ICCV2021, Oral).

Zero-shot Natural Language Video Localization (ZSNLVL) by Pseudo-Supervised Video Localization (PSVL) This repository is for Zero-shot Natural Languag

Computer Vision Lab. @ GIST 37 Dec 27, 2022
Some code of the implements of Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network

3D-GMPDCNN Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network PyTorch implementation of "Geological Modeling Usin

5 Nov 21, 2022
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction

Contact Potential Field This repo contains model, demo, and test codes of our paper: CPF: Learning a Contact Potential Field to Model the Hand-object

Lixin YANG 99 Dec 26, 2022
以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的斗地主ai

ddz-ai 介绍 斗地主是一种扑克游戏。游戏最少由3个玩家进行,用一副54张牌(连鬼牌),其中一方为地主,其余两家为另一方,双方对战,先出完牌的一方获胜。 ddz-ai以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的系统,使其经过大量训练后,能在实际游戏中获

freefuiiismyname 88 May 15, 2022
Python wrapper of LSODA (solving ODEs) which can be called from within numba functions.

numbalsoda numbalsoda is a python wrapper to the LSODA method in ODEPACK, which is for solving ordinary differential equation initial value problems.

Nick Wogan 52 Jan 09, 2023
a reimplementation of Optical Flow Estimation using a Spatial Pyramid Network in PyTorch

pytorch-spynet This is a personal reimplementation of SPyNet [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 269 Jan 02, 2023
PyTorch implementation of paper "StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement" (ICCV 2021 Oral)

StarEnhancer StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement (ICCV 2021 Oral) Abstract: Image enhancement is a subjective process w

IDKiro 133 Dec 28, 2022
LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation

LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation Table of Contents: Introduction Project Structure Installation Datas

Yu Wang 492 Dec 02, 2022
Just Go with the Flow: Self-Supervised Scene Flow Estimation

Just Go with the Flow: Self-Supervised Scene Flow Estimation Code release for the paper Just Go with the Flow: Self-Supervised Scene Flow Estimation,

Himangi Mittal 50 Nov 22, 2022
Pytorch based library to rank predicted bounding boxes using text/image user's prompts.

pytorch_clip_bbox: Implementation of the CLIP guided bbox ranking for Object Detection. Pytorch based library to rank predicted bounding boxes using t

Sergei Belousov 50 Nov 27, 2022