This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs)

Overview

Description

This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs) in [Gardy et al., 2019].

The user provides a time series as input. The algorithm will perform the following steps:

  • Transform the timeseries into an image
  • Convolve this image

The user can then apply filters, like a low-pass filter, to isolate low density events, such as IEDs.

Please, open main.py and change the path inside to use the program.

Procedure example (main.py)

### Init parameters (root is the path to the folder you have downloaded)
root = r"~/CKDE"
event_num = 5

### Get a timeseries filepath (look in the folder you have downloaded)
timeseries_folderpath =  os.path.join(root, "test_events_database\events_signal_data")
timeserie_filename = f"event_{event_num}.txt"

### Load a timeseries from the sample data provided with this program (1D)
signal = load_timeseries(timeseries_folderpath, timeserie_filename) # or,
#signal = random_signal_simulation()

### Get the timeseries info
json_dict = json.load(open(os.path.join(root,"test_events_database\events_info.json")))
sfreq = json_dict["events_info"][event_num]["sampling_frequency"]

### Convert it to a 2D signal
image_2D = from_1D_to_2D(signal, bandwidth = 1)

### Convolve the 2D signal
image_2D_convolved = convolve_2D_image(image_2D, convolution = "gaussian custom")

### Plot result
fig_name = "Epileptic spike (signal duration: 400 ms) \n\n[1] raw [2] imaged [3] convoluted"
pot_result(signal, image_2D, image_2D_convolved, fig_name)

Some information about the dataset

We propose some simulated data to validate our procedure with a known frequency, duration and position. This database is structured as shown in figure 1. User can either use these data, use his own, or simulate some. A signal simulation function is also provided in the program.

Methods

Figure 2 shows how the convolved image (2D) is drawn from the raw signal (1D). A: Convolution process. B: Full process.

Results

Figure 3 shows the result of the full process. The timeseries used as input is an IED called "event_5" in the data sample we provide with this program.

References

Gardy, L., Barbeau, E., and Hurter, C. (2020). Automatic detection of epileptic spikes in intracerebral eeg with convolutional kernel density estimation. In 4th International Conference on Human Computer Interaction Theory and Applications, pages 101–109. SCITEPRESS-Science and Technology Publications. https://doi.org/10.5220/0008877601010109

Dependencies

  • sklearn==0.22.2.post1
  • astropy==4.0.1
  • scipy==1.4.1
Owner
Ludovic Gardy
Ludovic Gardy
Training Structured Neural Networks Through Manifold Identification and Variance Reduction

Training Structured Neural Networks Through Manifold Identification and Variance Reduction This repository is a pytorch implementation of the Regulari

0 Dec 23, 2021
Extending JAX with custom C++ and CUDA code

Extending JAX with custom C++ and CUDA code This repository is meant as a tutorial demonstrating the infrastructure required to provide custom ops in

Dan Foreman-Mackey 237 Dec 23, 2022
Constructing Neural Network-Based Models for Simulating Dynamical Systems

Constructing Neural Network-Based Models for Simulating Dynamical Systems Note this repo is work in progress prior to reviewing This is a companion re

Christian Møldrup Legaard 21 Nov 25, 2022
Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface.

Gym-TORCS Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface. TORCS is the open-rource realistic

naoto yoshida 400 Dec 27, 2022
Python/Rust implementations and notes from Proofs Arguments and Zero Knowledge

What is this? This is where I'll be collecting resources related to the Study Group on Dr. Justin Thaler's Proofs Arguments And Zero Knowledge Book. T

Thor 66 Jan 04, 2023
AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS 2020) Introduction AdaShare is a novel and differentiable approach fo

94 Dec 22, 2022
1st Solution For NeurIPS 2021 Competition on ML4CO Dual Task

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

MEGVII Research 24 Sep 08, 2022
Code for generating the figures in the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?"

Code for running simulations for the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Lin

Matthew Farrell 1 Nov 22, 2022
Train the HRNet model on ImageNet

High-resolution networks (HRNets) for Image classification News [2021/01/20] Add some stronger ImageNet pretrained models, e.g., the HRNet_W48_C_ssld_

HRNet 866 Jan 04, 2023
This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our paper "Accounting for Gaussian Process Imprecision in Bayesian Optimization"

Prior-RObust Bayesian Optimization (PROBO) Introduction, TOC This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our

Julian Rodemann 2 Mar 19, 2022
Python inverse kinematics for your robot model based on Pinocchio.

Python inverse kinematics for your robot model based on Pinocchio.

Stéphane Caron 50 Dec 22, 2022
Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021

Introduction Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021 Prerequisites Python 3.8 and conda, get Conda CUDA 11

51 Dec 03, 2022
Random Walk Graph Neural Networks

Random Walk Graph Neural Networks This repository is the official implementation of Random Walk Graph Neural Networks. Requirements Code is written in

Giannis Nikolentzos 38 Jan 02, 2023
Pytorch implementation of the Variational Recurrent Neural Network (VRNN).

VariationalRecurrentNeuralNetwork Pytorch implementation of the Variational RNN (VRNN), from A Recurrent Latent Variable Model for Sequential Data. Th

emmanuel 251 Dec 17, 2022
【Arxiv】Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution

SANet Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 to

36 Jan 05, 2023
Implementation of a Transformer using ReLA (Rectified Linear Attention)

ReLA (Rectified Linear Attention) Transformer Implementation of a Transformer using ReLA (Rectified Linear Attention). It will also contain an attempt

Phil Wang 49 Oct 14, 2022
这是一个yolo3-tf2的源码,可以用于训练自己的模型。

YOLOV3:You Only Look Once目标检测模型在Tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料

Bubbliiiing 68 Dec 21, 2022
Official codebase used to develop Vision Transformer, MLP-Mixer, LiT and more.

Big Vision This codebase is designed for training large-scale vision models on Cloud TPU VMs. It is based on Jax/Flax libraries, and uses tf.data and

Google Research 701 Jan 03, 2023
A demonstration of using a live Tensorflow session to create an interactive face-GAN explorer.

Streamlit Demo: The Controllable GAN Face Generator This project highlights Streamlit's new hash_func feature with an app that calls on TensorFlow to

Streamlit 257 Dec 31, 2022
rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.

Open-source library for reliable evaluation on reinforcement learning and machine learning benchmarks. See NeurIPS 2021 oral for details.

Google Research 529 Jan 01, 2023