Densely Connected Convolutional Networks, In CVPR 2017 (Best Paper Award).

Overview

Densely Connected Convolutional Networks (DenseNets)

This repository contains the code for DenseNet introduced in the following paper

Densely Connected Convolutional Networks (CVPR 2017, Best Paper Award)

Gao Huang*, Zhuang Liu*, Laurens van der Maaten and Kilian Weinberger (* Authors contributed equally).

and its journal version

Convolutional Networks with Dense Connectivity (TPAMI 2019)

Gao Huang, Zhuang Liu, Geoff Pleiss, Laurens van der Maaten and Kilian Weinberger.

Now with memory-efficient implementation! Please check the technical report and code for more infomation.

The code is built on fb.resnet.torch.

Citation

If you find DenseNet useful in your research, please consider citing:

@article{huang2019convolutional,
 title={Convolutional Networks with Dense Connectivity},
 author={Huang, Gao and Liu, Zhuang and Pleiss, Geoff and Van Der Maaten, Laurens and Weinberger, Kilian},
 journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
 year={2019}
 }
 
@inproceedings{huang2017densely,
  title={Densely Connected Convolutional Networks},
  author={Huang, Gao and Liu, Zhuang and van der Maaten, Laurens and Weinberger, Kilian Q },
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2017}
}

Other Implementations

Our [Caffe], Our memory-efficient [Caffe], Our memory-efficient [PyTorch], [PyTorch] by Andreas Veit, [PyTorch] by Brandon Amos, [PyTorch] by Federico Baldassarre, [MXNet] by Nicatio, [MXNet] by Xiong Lin, [MXNet] by miraclewkf, [Tensorflow] by Yixuan Li, [Tensorflow] by Laurent Mazare, [Tensorflow] by Illarion Khlestov, [Lasagne] by Jan Schlüter, [Keras] by tdeboissiere,
[Keras] by Roberto de Moura Estevão Filho, [Keras] by Somshubra Majumdar, [Chainer] by Toshinori Hanya, [Chainer] by Yasunori Kudo, [Torch 3D-DenseNet] by Barry Kui, [Keras] by Christopher Masch, [Tensorflow2] by Gaston Rios and Ulises Jeremias Cornejo Fandos.

Note that we only listed some early implementations here. If you would like to add yours, please submit a pull request.

Some Following up Projects

  1. Multi-Scale Dense Convolutional Networks for Efficient Prediction
  2. DSOD: Learning Deeply Supervised Object Detectors from Scratch
  3. CondenseNet: An Efficient DenseNet using Learned Group Convolutions
  4. Fully Convolutional DenseNets for Semantic Segmentation
  5. Pelee: A Real-Time Object Detection System on Mobile Devices

Contents

  1. Introduction
  2. Usage
  3. Results on CIFAR
  4. Results on ImageNet and Pretrained Models
  5. Updates

Introduction

DenseNet is a network architecture where each layer is directly connected to every other layer in a feed-forward fashion (within each dense block). For each layer, the feature maps of all preceding layers are treated as separate inputs whereas its own feature maps are passed on as inputs to all subsequent layers. This connectivity pattern yields state-of-the-art accuracies on CIFAR10/100 (with or without data augmentation) and SVHN. On the large scale ILSVRC 2012 (ImageNet) dataset, DenseNet achieves a similar accuracy as ResNet, but using less than half the amount of parameters and roughly half the number of FLOPs.

Figure 1: A dense block with 5 layers and growth rate 4.

densenet Figure 2: A deep DenseNet with three dense blocks.

Usage

  1. Install Torch and required dependencies like cuDNN. See the instructions here for a step-by-step guide.
  2. Clone this repo: git clone https://github.com/liuzhuang13/DenseNet.git

As an example, the following command trains a DenseNet-BC with depth L=100 and growth rate k=12 on CIFAR-10:

th main.lua -netType densenet -dataset cifar10 -batchSize 64 -nEpochs 300 -depth 100 -growthRate 12

As another example, the following command trains a DenseNet-BC with depth L=121 and growth rate k=32 on ImageNet:

th main.lua -netType densenet -dataset imagenet -data [dataFolder] -batchSize 256 -nEpochs 90 -depth 121 -growthRate 32 -nGPU 4 -nThreads 16 -optMemory 3

Please refer to fb.resnet.torch for data preparation.

DenseNet and DenseNet-BC

By default, the code runs with the DenseNet-BC architecture, which has 1x1 convolutional bottleneck layers, and compresses the number of channels at each transition layer by 0.5. To run with the original DenseNet, simply use the options -bottleneck false and -reduction 1

Memory efficient implementation (newly added feature on June 6, 2017)

There is an option -optMemory which is very useful for reducing GPU memory footprint when training a DenseNet. By default, the value is set to 2, which activates the shareGradInput function (with small modifications from here). There are two extreme memory efficient modes (-optMemory 3 or -optMemory 4) which use a customized densely connected layer. With -optMemory 4, the largest 190-layer DenseNet-BC on CIFAR can be trained on a single NVIDIA TitanX GPU (uses 8.3G of 12G) instead of fully using four GPUs with the standard (recursive concatenation) implementation .

More details about the memory efficient implementation are discussed here.

Results on CIFAR

The table below shows the results of DenseNets on CIFAR datasets. The "+" mark at the end denotes for standard data augmentation (random crop after zero-padding, and horizontal flip). For a DenseNet model, L denotes its depth and k denotes its growth rate. On CIFAR-10 and CIFAR-100 without data augmentation, a Dropout layer with drop rate 0.2 is introduced after each convolutional layer except the very first one.

Model Parameters CIFAR-10 CIFAR-10+ CIFAR-100 CIFAR-100+
DenseNet (L=40, k=12) 1.0M 7.00 5.24 27.55 24.42
DenseNet (L=100, k=12) 7.0M 5.77 4.10 23.79 20.20
DenseNet (L=100, k=24) 27.2M 5.83 3.74 23.42 19.25
DenseNet-BC (L=100, k=12) 0.8M 5.92 4.51 24.15 22.27
DenseNet-BC (L=250, k=24) 15.3M 5.19 3.62 19.64 17.60
DenseNet-BC (L=190, k=40) 25.6M - 3.46 - 17.18

Results on ImageNet and Pretrained Models

Torch

Models in the original paper

The Torch models are trained under the same setting as in fb.resnet.torch. The error rates shown are 224x224 1-crop test errors.

Network Top-1 error Torch Model
DenseNet-121 (k=32) 25.0 Download (64.5MB)
DenseNet-169 (k=32) 23.6 Download (114.4MB)
DenseNet-201 (k=32) 22.5 Download (161.8MB)
DenseNet-161 (k=48) 22.2 Download (230.8MB)

Models in the tech report

More accurate models trained with the memory efficient implementation in the technical report.

Network Top-1 error Torch Model
DenseNet-264 (k=32) 22.1 Download (256MB)
DenseNet-232 (k=48) 21.2 Download (426MB)
DenseNet-cosine-264 (k=32) 21.6 Download (256MB)
DenseNet-cosine-264 (k=48) 20.4 Download (557MB)

Caffe

https://github.com/shicai/DenseNet-Caffe.

PyTorch

PyTorch documentation on models. We would like to thank @gpleiss for this nice work in PyTorch.

Keras, Tensorflow and Theano

https://github.com/flyyufelix/DenseNet-Keras.

MXNet

https://github.com/miraclewkf/DenseNet.

Wide-DenseNet for better Time/Accuracy and Memory/Accuracy Tradeoff

If you use DenseNet as a model in your learning task, to reduce the memory and time consumption, we recommend use a wide and shallow DenseNet, following the strategy of wide residual networks. To obtain a wide DenseNet we set the depth to be smaller (e.g., L=40) and the growthRate to be larger (e.g., k=48).

We test a set of Wide-DenseNet-BCs and compared the memory and time with the DenseNet-BC (L=100, k=12) shown above. We obtained the statistics using a single TITAN X card, with batch size 64, and without any memory optimization.

Model Parameters CIFAR-10+ CIFAR-100+ Time per Iteration Memory
DenseNet-BC (L=100, k=12) 0.8M 4.51 22.27 0.156s 5452MB
Wide-DenseNet-BC (L=40, k=36) 1.5M 4.58 22.30 0.130s 4008MB
Wide-DenseNet-BC (L=40, k=48) 2.7M 3.99 20.29 0.165s 5245MB
Wide-DenseNet-BC (L=40, k=60) 4.3M 4.01 19.99 0.223s 6508MB

Obersevations:

  1. Wide-DenseNet-BC (L=40, k=36) uses less memory/time while achieves about the same accuracy as DenseNet-BC (L=100, k=12).
  2. Wide-DenseNet-BC (L=40, k=48) uses about the same memory/time as DenseNet-BC (L=100, k=12), while is much more accurate.

Thus, for practical use, we suggest picking one model from those Wide-DenseNet-BCs.

Updates

12/10/2019:

  1. Journal version (accepted by IEEE TPAMI) released.

08/23/2017:

  1. Add supporting code, so one can simply git clone and run.

06/06/2017:

  1. Support ultra memory efficient training of DenseNet with customized densely connected layer.

  2. Support memory efficient training of DenseNet with standard densely connected layer (recursive concatenation) by fixing the shareGradInput function.

05/17/2017:

  1. Add Wide-DenseNet.
  2. Add keras, tf, theano link for pretrained models.

04/20/2017:

  1. Add usage of models in PyTorch.

03/29/2017:

  1. Add the code for imagenet training.

12/03/2016:

  1. Add Imagenet results and pretrained models.
  2. Add DenseNet-BC structures.

Contact

liuzhuangthu at gmail.com
gaohuang at tsinghua.edu.cn
Any discussions, suggestions and questions are welcome!

Owner
Zhuang Liu
Zhuang Liu
Gym Threat Defense

Gym Threat Defense The Threat Defense environment is an OpenAI Gym implementation of the environment defined as the toy example in Optimal Defense Pol

Hampus Ramström 5 Dec 08, 2022
A real world application of a Recurrent Neural Network on a binary classification of time series data

What is this This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data

Josep Maria Salvia Hornos 2 Jan 30, 2022
Freecodecamp Scientific Computing with Python Certification; Solution for Challenge 2: Time Calculator

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Hellen Namulinda 0 Feb 26, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

TensorFlow implementation of 3D Convolutional Neural Networks for Speaker Verification - Official Project Page - Pytorch Implementation This repositor

Amirsina Torfi 753 Dec 17, 2022
Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio"

Success Predictor Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio". B

Rodrigo Nazar Meier 4 Mar 17, 2022
PINN Burgers - 1D Burgers equation simulated by PINN

PINN(s): Physics-Informed Neural Network(s) for Burgers equation This is an impl

ShotaDEGUCHI 1 Feb 12, 2022
Full Resolution Residual Networks for Semantic Image Segmentation

Full-Resolution Residual Networks (FRRN) This repository contains code to train and qualitatively evaluate Full-Resolution Residual Networks (FRRNs) a

Toby Pohlen 274 Oct 27, 2022
A Simple Key-Value Data-store written in Python

mercury-db This is a File Based Key-Value Datastore that supports basic CRUD (Create, Read, Update, Delete) operations developed using Python. The dat

Vaidhyanathan S M 1 Jan 09, 2022
Implementation of "RaScaNet: Learning Tiny Models by Raster-Scanning Image" from CVPR 2021.

RaScaNet: Learning Tiny Models by Raster-Scanning Images Deploying deep convolutional neural networks on ultra-low power systems is challenging, becau

SAIT (Samsung Advanced Institute of Technology) 5 Dec 26, 2022
Point Cloud Registration using Representative Overlapping Points.

Point Cloud Registration using Representative Overlapping Points (ROPNet) Abstract 3D point cloud registration is a fundamental task in robotics and c

ZhuLifa 36 Dec 16, 2022
Learning Domain Invariant Representations in Goal-conditioned Block MDPs

Learning Domain Invariant Representations in Goal-conditioned Block MDPs Beining Han, Chongyi Zheng, Harris Chan, Keiran Paster, Michael R. Zhang, Jim

Chongyi Zheng 3 Apr 12, 2022
📝 Wrapper library for text generation / language models at char and word level with RNN in TensorFlow

tensorlm Generate Shakespeare poems with 4 lines of code. Installation tensorlm is written in / for Python 3.4+ and TensorFlow 1.1+ pip3 install tenso

Kilian Batzner 63 May 22, 2021
GNN-based Recommendation Benchmark

GRecX A Fair Benchmark for GNN-based Recommendation Homepage and Documentation Homepage: Documentation: Paper: GRecX: An Efficient and Unified Benchma

73 Oct 17, 2022
Rayvens makes it possible for data scientists to access hundreds of data services within Ray with little effort.

Rayvens augments Ray with events. With Rayvens, Ray applications can subscribe to event streams, process and produce events. Rayvens leverages Apache

CodeFlare 32 Dec 25, 2022
Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks"

HKD Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks" cifia-100 result The implementation of compared methods are ba

Wang Yucheng 30 Dec 18, 2022
(IEEE TIP 2021) Regularized Densely-connected Pyramid Network for Salient Instance Segmentation

RDPNet IEEE TIP 2021: Regularized Densely-connected Pyramid Network for Salient Instance Segmentation PyTorch training and testing code are available.

Yu-Huan Wu 41 Oct 21, 2022
Unofficial reimplementation of ECAPA-TDNN for speaker recognition (EER=0.86 for Vox1_O when train only in Vox2)

Introduction This repository contains my unofficial reimplementation of the standard ECAPA-TDNN, which is the speaker recognition in VoxCeleb2 dataset

Tao Ruijie 277 Dec 31, 2022
Lucid Sonic Dreams syncs GAN-generated visuals to music.

Lucid Sonic Dreams Lucid Sonic Dreams syncs GAN-generated visuals to music. By default, it uses NVLabs StyleGAN2, with pre-trained models lifted from

731 Jan 02, 2023
Deep Reinforcement Learning for Multiplayer Online Battle Arena

MOBA_RL Deep Reinforcement Learning for Multiplayer Online Battle Arena Prerequisite Python 3 gym-derk Tensorflow 2.4.1 Dotaservice of TimZaman Seed R

Dohyeong Kim 32 Dec 18, 2022