SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021]

Related tags

Deep LearningSSD
Overview

SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021]

Pdf: https://openreview.net/forum?id=v5gjXpmR8J

Code for our ICLR 2021 paper on outlier detection, titled SSD, without requiring class labels of in-distribution training data. We leverage recent advances in self-supervised representation learning followed by the cluster-based outlier detection to achieve competitive performance. This repository support both self-supervised training of networks and outlier detection evaluation of pre-trained networks. It also includes code for the two proposed extensions in the paper, i.e., 1) Few-shot outlier detection and 2) Extending SSD by including class labels, when available.

Getting started

Let's start by installing all dependencies.

pip install -r requirement.txt

Outlier detection with a pre-trained classifier

This is how we can evaluate the performance of a pre-trained ResNet50 classifier trained using SimCLR on the CIFAR-10 dataset.

CUDA_VISIBLE_DEVICES=$gpus_ids python -u eval_ssd.py --arch resnet50 --training-mode SimCLR --dataset cifar10 --ckpt checkpoint_path --normalize --exp-name name_of_this_experiment

  • training-mode: Choose from ("SimCLR", "SupCon", "SupCE"). This will choose the right network modules for the checkpoint.
  • arch: Choose from available architectures in models.py
  • dataset: Choose from ("cifar10", "cifar100", "svhn", "stl")
  • --normalize: If set, it will normalize input images. Use only if inputs were normalized in training too.
  • --exp-name: Experiment name. We will log results into a text file of this name.

The steps to evaluate with $SSD_k$ are exactly the same, except that now you have to also provide values for k and copies . k refers to how many outliers are available from each class of targeted OOD datasets while copies refers to the number of transformed instances created per available outlier image.

CUDA_VISIBLE_DEVICES=$gpu_id python -u eval_ssdk.py --arch resnet50 --training-mode SimCLR --dataset cifar10 --ckpt checkpoint_path --normalize --k 5 --copies 10

Training a classifier using self-supervised/supervised learning

We also support training a classifier using self-supervised, supervised or a combination of both training methods. Here is an example script to train a ResNet50 network on the CIFAR-10 dataset using SimCLR.

CUDA_VISIBLE_DEVICES=$gpus_ids python -u train.py --arch resnet50 --training-mode SimCLR --dataset cifar10 --results-dir directory_to_save_checkpoint --exp-name name_of_this_experiment --warmup --normalize

  • --training-mode: Choose from ("SimCLR", "SupCon", "SupCE"). This will choose appropriate network modules, loss functions, and trainers.
  • --warmup: We recommend using warmup when batch-size is large, which is often the case for self-supervised methods.

Choices for other arguments are similar to what we mentioned earlier in the evaluation section.

Reference

If you find this work helpful, consider citing it.

@inproceedings{sehwag2021ssd,
  title={SSD:  A Unified Framework for Self-Supervised Outlier Detection},
  author={Vikash Sehwag and Mung Chiang and Prateek Mittal},
 booktitle={International Conference on Learning Representations},
 year={2021},
 url={https://openreview.net/forum?id=v5gjXpmR8J}
}
Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time

Semi Hand-Object Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time (CVPR 2021).

96 Dec 27, 2022
Hack Camera, Microphone, Location, Clipboard With Just a Link. Also, Get Many Details About Victim's Device. And So On...

An Automated Tool to Hack Victim's Camera, Microphone, Location, Clipboard. Has 2 Extra Features. Version 1.1 Update Fixed Some Major Bugs Data Saving

ToxicNoob 36 Jan 07, 2023
Code for the paper titled "Prabhupadavani: A Code-mixed Speech Translation Data for 25 languages"

Prabhupadavani: A Code-mixed Speech Translation Data for 25 languages Code for the paper titled "Prabhupadavani: A Code-mixed Speech Translation Data

Ayush Daksh 12 Dec 01, 2022
FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery (TGRS)

FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery by Ailong Ma, Junjue Wang*, Yanfei Zhon

Kingdrone 43 Jan 05, 2023
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 865 Nov 17, 2022
Python Jupyter kernel using Poetry for reproducible notebooks

Poetry Kernel Use per-directory Poetry environments to run Jupyter kernels. No need to install a Jupyter kernel per Python virtual environment! The id

Pathbird 204 Jan 04, 2023
免费获取http代理并生成proxifier配置文件

freeproxy 免费获取http代理并生成proxifier配置文件 公众号:台下言书 工具说明:https://mp.weixin.qq.com/s?__biz=MzIyNDkwNjQ5Ng==&mid=2247484425&idx=1&sn=56ccbe130822aa35038095317

说书人 32 Mar 25, 2022
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Neural Circuit Policies Enabling Auditable Autonomy Online access via SharedIt Neural Circuit Policies (NCPs) are designed sparse recurrent neural net

8 Jan 07, 2023
iNAS: Integral NAS for Device-Aware Salient Object Detection

iNAS: Integral NAS for Device-Aware Salient Object Detection Introduction Integral search design (jointly consider backbone/head structures, design/de

顾宇超 77 Dec 02, 2022
Highly comparative time-series analysis

〰️ hctsa 〰️ : highly comparative time-series analysis hctsa is a software package for running highly comparative time-series analysis using Matlab (fu

Ben Fulcher 569 Dec 21, 2022
Implementation of the master's thesis "Temporal copying and local hallucination for video inpainting".

Temporal copying and local hallucination for video inpainting This repository contains the implementation of my master's thesis "Temporal copying and

David Álvarez de la Torre 1 Dec 02, 2022
Spatial color quantization in Rust

rscolorq Rust port of Derrick Coetzee's scolorq, based on the 1998 paper "On spatial quantization of color images" by Jan Puzicha, Markus Held, Jens K

Collyn O'Kane 37 Dec 22, 2022
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

259 Jan 04, 2023
DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations

DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations This repository contains the data, scripts and baseline co

Alexa 51 Dec 17, 2022
A web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks

This project is a web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks. Thanks for NVlabs' excelle

K.L. 150 Dec 15, 2022
Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral)

Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral) This is the official implementat

Yifan Zhang 259 Dec 25, 2022
EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks

EncT5 (Unofficial) Pytorch Implementation of EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks About Finetune T5 model for classification & r

Jangwon Park 34 Jan 01, 2023
Align and Prompt: Video-and-Language Pre-training with Entity Prompts

ALPRO Align and Prompt: Video-and-Language Pre-training with Entity Prompts [Paper] Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles, Steven C.H

Salesforce 127 Dec 21, 2022
An implementation of the [Hierarchical (Sig-Wasserstein) GAN] algorithm for large dimensional Time Series Generation

Hierarchical GAN for large dimensional financial market data Implementation This repository is an implementation of the [Hierarchical (Sig-Wasserstein

11 Nov 29, 2022
VOS: Learning What You Don’t Know by Virtual Outlier Synthesis

VOS This is the source code accompanying the paper VOS: Learning What You Don’t

248 Dec 25, 2022