SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021]

Related tags

Deep LearningSSD
Overview

SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021]

Pdf: https://openreview.net/forum?id=v5gjXpmR8J

Code for our ICLR 2021 paper on outlier detection, titled SSD, without requiring class labels of in-distribution training data. We leverage recent advances in self-supervised representation learning followed by the cluster-based outlier detection to achieve competitive performance. This repository support both self-supervised training of networks and outlier detection evaluation of pre-trained networks. It also includes code for the two proposed extensions in the paper, i.e., 1) Few-shot outlier detection and 2) Extending SSD by including class labels, when available.

Getting started

Let's start by installing all dependencies.

pip install -r requirement.txt

Outlier detection with a pre-trained classifier

This is how we can evaluate the performance of a pre-trained ResNet50 classifier trained using SimCLR on the CIFAR-10 dataset.

CUDA_VISIBLE_DEVICES=$gpus_ids python -u eval_ssd.py --arch resnet50 --training-mode SimCLR --dataset cifar10 --ckpt checkpoint_path --normalize --exp-name name_of_this_experiment

  • training-mode: Choose from ("SimCLR", "SupCon", "SupCE"). This will choose the right network modules for the checkpoint.
  • arch: Choose from available architectures in models.py
  • dataset: Choose from ("cifar10", "cifar100", "svhn", "stl")
  • --normalize: If set, it will normalize input images. Use only if inputs were normalized in training too.
  • --exp-name: Experiment name. We will log results into a text file of this name.

The steps to evaluate with $SSD_k$ are exactly the same, except that now you have to also provide values for k and copies . k refers to how many outliers are available from each class of targeted OOD datasets while copies refers to the number of transformed instances created per available outlier image.

CUDA_VISIBLE_DEVICES=$gpu_id python -u eval_ssdk.py --arch resnet50 --training-mode SimCLR --dataset cifar10 --ckpt checkpoint_path --normalize --k 5 --copies 10

Training a classifier using self-supervised/supervised learning

We also support training a classifier using self-supervised, supervised or a combination of both training methods. Here is an example script to train a ResNet50 network on the CIFAR-10 dataset using SimCLR.

CUDA_VISIBLE_DEVICES=$gpus_ids python -u train.py --arch resnet50 --training-mode SimCLR --dataset cifar10 --results-dir directory_to_save_checkpoint --exp-name name_of_this_experiment --warmup --normalize

  • --training-mode: Choose from ("SimCLR", "SupCon", "SupCE"). This will choose appropriate network modules, loss functions, and trainers.
  • --warmup: We recommend using warmup when batch-size is large, which is often the case for self-supervised methods.

Choices for other arguments are similar to what we mentioned earlier in the evaluation section.

Reference

If you find this work helpful, consider citing it.

@inproceedings{sehwag2021ssd,
  title={SSD:  A Unified Framework for Self-Supervised Outlier Detection},
  author={Vikash Sehwag and Mung Chiang and Prateek Mittal},
 booktitle={International Conference on Learning Representations},
 year={2021},
 url={https://openreview.net/forum?id=v5gjXpmR8J}
}
Implementation of ToeplitzLDA for spatiotemporal stationary time series data.

Code for the ToeplitzLDA classifier proposed in here. The classifier conforms sklearn and can be used as a drop-in replacement for other LDA classifiers. For in-depth usage refer to the learning from

Jan Sosulski 5 Nov 07, 2022
Implementation of the paper "Language-agnostic representation learning of source code from structure and context".

Code Transformer This is an official PyTorch implementation of the CodeTransformer model proposed in: D. Zügner, T. Kirschstein, M. Catasta, J. Leskov

Daniel Zügner 131 Dec 13, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Jan 04, 2023
FrankMocap: A Strong and Easy-to-use Single View 3D Hand+Body Pose Estimator

FrankMocap pursues an easy-to-use single view 3D motion capture system developed by Facebook AI Research (FAIR). FrankMocap provides state-of-the-art 3D pose estimation outputs for body, hand, and bo

Facebook Research 1.9k Jan 07, 2023
Self-attentive task GAN for space domain awareness data augmentation.

SATGAN TODO: update the article URL once published. Article about this implemention The self-attentive task generative adversarial network (SATGAN) le

Nathan 2 Mar 24, 2022
Official PyTorch implementation of "The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person Pose Estimation" (ICCV 21).

CenterGroup This the official implementation of our ICCV 2021 paper The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person P

Dynamic Vision and Learning Group 43 Dec 25, 2022
CryptoFrog - My First Strategy for freqtrade

cryptofrog-strategies CryptoFrog - My First Strategy for freqtrade NB: (2021-04-20) You'll need the latest freqtrade develop branch otherwise you migh

Robert Davey 137 Jan 01, 2023
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 864 Dec 30, 2022
MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving

MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving Code will be available soon. Motivation Architecture

Kai Chen 24 Apr 19, 2022
A Python framework for conversational search

Chatty Goose Multi-stage Conversational Passage Retrieval: An Approach to Fusing Term Importance Estimation and Neural Query Rewriting Installation Ma

Castorini 36 Oct 23, 2022
Official implementation of paper Gradient Matching for Domain Generalization

Gradient Matching for Domain Generalisation This is the official PyTorch implementation of Gradient Matching for Domain Generalisation. In our paper,

94 Dec 23, 2022
Multi-scale discriminator feature-wise loss function

Multi-Scale Discriminative Feature Loss This repository provides code for Multi-Scale Discriminative Feature (MDF) loss for image reconstruction algor

Graphics and Displays group - University of Cambridge 76 Dec 12, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
Sky Computing: Accelerating Geo-distributed Computing in Federated Learning

Sky Computing Introduction Sky Computing is a load-balanced framework for federated learning model parallelism. It adaptively allocate model layers to

HPC-AI Tech 72 Dec 27, 2022
A multi-entity Transformer for multi-agent spatiotemporal modeling.

baller2vec This is the repository for the paper: Michael A. Alcorn and Anh Nguyen. baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotempor

Michael A. Alcorn 56 Nov 15, 2022
Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods."

pv_predict_unet-lstm Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods." IEEE Transactions

FolkScientistInDL 8 Oct 08, 2022
Neighborhood Contrastive Learning for Novel Class Discovery

Neighborhood Contrastive Learning for Novel Class Discovery This repository contains the official implementation of our paper: Neighborhood Contrastiv

Zhun Zhong 56 Dec 09, 2022
VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech

VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech Jaehyeon Kim, Jungil Kong, and Juhee Son In our rece

Jaehyeon Kim 1.7k Jan 08, 2023
An AI Assistant More Than a Toolkit

tymon An AI Assistant More Than a Toolkit The reason for creating framework tymon is simple. making AI more like an assistant, helping us to complete

TymonXie 46 Oct 24, 2022
ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

Double-zh 45 Dec 19, 2022