A multi-entity Transformer for multi-agent spatiotemporal modeling.

Overview

baller2vec

This is the repository for the paper:

Michael A. Alcorn and Anh Nguyen. baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotemporal Modeling. arXiv. 2021.

Left: the input for baller2vec at each time step t is an unordered set of feature vectors containing information about the identities and locations of NBA players on the court. Right: baller2vec generalizes the standard Transformer to the multi-entity setting by employing a novel self-attention mask tensor. The mask is then reshaped into a matrix for compatibility with typical Transformer implementations.
By exclusively learning to predict the trajectory of the ball, baller2vec was able to infer idiosyncratic player attributes.
Further, nearest neighbors in baller2vec's embedding space are plausible doppelgängers. Credit for the images: Erik Drost, Keith Allison, Jose Garcia, Keith Allison, Verse Photography, and Joe Glorioso.
Additionally, several attention heads in baller2vec appear to perform different basketball-relevant functions, such as anticipating passes. Code to generate the GIF was adapted from @linouk23's NBA Player Movement's repository.
Here, a baller2vec model trained to simultaneously predict the trajectories of all the players on the court uses both the historical and current context to forecast the target player's trajectory at each time step. The left grid shows the target player's true trajectory at each time step while the right grid shows baller2vec's forecast distribution. The blue-bordered center cell is the "stationary" trajectory.

Citation

If you use this code for your own research, please cite:

@article{alcorn2021baller2vec,
   title={baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotemporal Modeling},
   author={Alcorn, Michael A. and Nguyen, Anh},
   journal={arXiv preprint arXiv:1609.03675},
   year={2021}
}

Training baller2vec

Setting up .basketball_profile

After you've cloned the repository to your desired location, create a file called .basketball_profile in your home directory:

nano ~/.basketball_profile

and copy and paste in the contents of .basketball_profile, replacing each of the variable values with paths relevant to your environment. Next, add the following line to the end of your ~/.bashrc:

source ~/.basketball_profile

and either log out and log back in again or run:

source ~/.bashrc

You should now be able to copy and paste all of the commands in the various instructions sections. For example:

echo ${PROJECT_DIR}

should print the path you set for PROJECT_DIR in .basketball_profile.

Installing the necessary Python packages

cd ${PROJECT_DIR}
pip3 install --upgrade -r requirements.txt

Organizing the play-by-play and tracking data

  1. Copy events.zip (which I acquired from here [mirror here] using https://downgit.github.io) to the DATA_DIR directory and unzip it:
mkdir -p ${DATA_DIR}
cp ${PROJECT_DIR}/events.zip ${DATA_DIR}
cd ${DATA_DIR}
unzip -q events.zip
rm events.zip

Descriptions for the various EVENTMSGTYPEs can be found here (mirror here).

  1. Clone the tracking data from here (mirror here) to the DATA_DIR directory:
cd ${DATA_DIR}
git clone [email protected]:linouk23/NBA-Player-Movements.git

A description of the tracking data can be found here.

Generating the training data

cd ${PROJECT_DIR}
nohup python3 generate_game_numpy_arrays.py > data.log &

You can monitor its progress with:

top

or:

ls -U ${GAMES_DIR} | wc -l

There should be 1,262 NumPy arrays (corresponding to 631 X/y pairs) when finished.

Animating a sequence

  1. If you don't have a display hooked up to your GPU server, you'll need to first clone the repository to your local machine and retrieve certain files from the remote server:
# From your local machine.
mkdir -p ~/scratch
cd ~/scratch

username=michael
server=gpu3.cse.eng.auburn.edu
data_dir=/home/michael/baller2vec_data
scp ${username}@${server}:${data_dir}/baller2vec_config.pydict .

games_dir=${data_dir}/games
gameid=0021500622

scp ${username}@${server}:${games_dir}/\{${gameid}_X.npy,${gameid}_y.npy\} .
  1. You can then run this code in the Python interpreter from within the repository (make sure you source .basketball_profile first if running locally):
import os

from animator import Game
from settings import DATA_DIR, GAMES_DIR

gameid = "0021500622"
try:
    game = Game(DATA_DIR, GAMES_DIR, gameid)
except FileNotFoundError:
    home_dir = os.path.expanduser("~")
    DATA_DIR = f"{home_dir}/scratch"
    GAMES_DIR = f"{home_dir}/scratch"
    game = Game(DATA_DIR, GAMES_DIR, gameid)

# https://youtu.be/FRrh_WkyXko?t=109
start_period = 3
start_time = "1:55"
stop_period = 3
stop_time = "1:51"
game.show_seq(start_period, start_time, stop_period, stop_time)

to generate the following animation:

Running the training script

Run (or copy and paste) the following script, editing the variables as appropriate.

#!/usr/bin/env bash

# Experiment identifier. Output will be saved to ${EXPERIMENTS_DIR}/${JOB}.
JOB=$(date +%Y%m%d%H%M%S)

# Training options.
echo "train:" >> ${JOB}.yaml
task=ball_traj  # ball_traj, ball_loc, event, player_traj, score, or seq2seq.
echo "  task: ${task}" >> ${JOB}.yaml
echo "  min_playing_time: 0" >> ${JOB}.yaml  # 0/13314/39917/1.0e+6 --> 100%/75%/50%/0%.
echo "  train_valid_prop: 0.95" >> ${JOB}.yaml
echo "  train_prop: 0.95" >> ${JOB}.yaml
echo "  train_samples_per_epoch: 20000" >> ${JOB}.yaml
echo "  valid_samples: 1000" >> ${JOB}.yaml
echo "  workers: 10" >> ${JOB}.yaml
echo "  learning_rate: 1.0e-5" >> ${JOB}.yaml
if [[ ("$task" = "event") || ("$task" = "score") ]]
then
    prev_model=False
    echo "  prev_model: ${prev_model}" >> ${JOB}.yaml
    if [[ "$prev_model" != "False" ]]
    then
        echo "  patience: 5" >> ${JOB}.yaml
    fi
fi

# Dataset options.
echo "dataset:" >> ${JOB}.yaml
echo "  hz: 5" >> ${JOB}.yaml
echo "  secs: 4" >> ${JOB}.yaml
echo "  player_traj_n: 11" >> ${JOB}.yaml
echo "  max_player_move: 4.5" >> ${JOB}.yaml
echo "  ball_traj_n: 19" >> ${JOB}.yaml
echo "  max_ball_move: 8.5" >> ${JOB}.yaml
echo "  n_players: 10" >> ${JOB}.yaml
echo "  next_score_change_time_max: 35" >> ${JOB}.yaml
echo "  n_time_to_next_score_change: 36" >> ${JOB}.yaml
echo "  n_ball_loc_x: 95" >> ${JOB}.yaml
echo "  n_ball_loc_y: 51" >> ${JOB}.yaml
echo "  ball_future_secs: 2" >> ${JOB}.yaml

# Model options.
echo "model:" >> ${JOB}.yaml
echo "  embedding_dim: 20" >> ${JOB}.yaml
echo "  sigmoid: none" >> ${JOB}.yaml
echo "  mlp_layers: [128, 256, 512]" >> ${JOB}.yaml
echo "  nhead: 8" >> ${JOB}.yaml
echo "  dim_feedforward: 2048" >> ${JOB}.yaml
echo "  num_layers: 6" >> ${JOB}.yaml
echo "  dropout: 0.0" >> ${JOB}.yaml
if [[ "$task" != "seq2seq" ]]
then
    echo "  use_cls: False" >> ${JOB}.yaml
    echo "  embed_before_mlp: True" >> ${JOB}.yaml
fi

# Save experiment settings.
mkdir -p ${EXPERIMENTS_DIR}/${JOB}
mv ${JOB}.yaml ${EXPERIMENTS_DIR}/${JOB}/

# Start training the model.
gpu=0
cd ${PROJECT_DIR}
nohup python3 train_baller2vec.py ${JOB} ${gpu} > ${EXPERIMENTS_DIR}/${JOB}/train.log &
Owner
Michael A. Alcorn
Brute-forcing my way through life.
Michael A. Alcorn
This repository will be a summary and outlook on all our open, medical, AI advancements.

medical by LAION This repository will be a summary and outlook on all our open, medical, AI advancements. See the medical-general channel in the medic

LAION AI 18 Dec 30, 2022
Official implementation of FCL-taco2: Fast, Controllable and Lightweight version of Tacotron2 @ ICASSP 2021

FCL-Taco2: Towards Fast, Controllable and Lightweight Text-to-Speech synthesis (ICASSP 2021) Paper | Demo Block diagram of FCL-taco2, where the decode

Disong Wang 39 Sep 28, 2022
An unofficial personal implementation of UM-Adapt, specifically to tackle joint estimation of panoptic segmentation and depth prediction for autonomous driving datasets.

Semisupervised Multitask Learning This repository is an unofficial and slightly modified implementation of UM-Adapt[1] using PyTorch. This code primar

Abhinav Atrishi 11 Nov 25, 2022
190 Jan 03, 2023
Corruption Invariant Learning for Re-identification

Corruption Invariant Learning for Re-identification The official repository for Benchmarks for Corruption Invariant Person Re-identification (NeurIPS

Minghui Chen 73 Dec 08, 2022
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 08, 2023
Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021]

Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021] Paper: https://arxiv.org/abs/2104.11208 Introduction Despite the significa

76 Dec 07, 2022
Pytorch code for ICRA'21 paper: "Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation"

Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation This repository is the pytorch implementation of our paper: Hierarchical Cr

43 Nov 21, 2022
GPU Programming with Julia - course at the Swiss National Supercomputing Centre (CSCS), ETH Zurich

Course Description The programming language Julia is being more and more adopted in High Performance Computing (HPC) due to its unique way to combine

Samuel Omlin 192 Jan 03, 2023
Code and description for my BSc Project, September 2021

BSc-Project Disclaimer: This repo consists of only the additional python scripts necessary to run the agent. To run the project on your own personal d

Matin Tavakoli 20 Jul 19, 2022
Unofficial implementation of Pix2SEQ

Unofficial-Pix2seq: A Language Modeling Framework for Object Detection Unofficial implementation of Pix2SEQ. Please use this code with causion. Many i

159 Dec 12, 2022
Pytorch implementation of SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation

SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation Efficient Self-Ensemble Framework for Semantic Segmentation by Walid Bousselham

61 Dec 26, 2022
TorchX: A PyTorch Extension Library for More Efficient Deep Learning

TorchX TorchX: A PyTorch Extension Library for More Efficient Deep Learning. @misc{torchx, author = {Ansheng You and Changxu Wang}, title = {T

Donny You 8 May 28, 2022
The official re-implementation of the Neurips 2021 paper, "Targeted Neural Dynamical Modeling".

Targeted Neural Dynamical Modeling Note: This is a re-implementation (in Tensorflow2) of the original TNDM model. We do not plan to further update the

6 Oct 05, 2022
Demos of essentia classifiers hosted on replicate.ai

essentia-replicate-demos Demos of Essentia models hosted on replicate.ai's MTG site. The models Check our site for a complete list of the models avail

Music Technology Group - Universitat Pompeu Fabra 12 Nov 14, 2022
NovelD: A Simple yet Effective Exploration Criterion

NovelD: A Simple yet Effective Exploration Criterion Intro This is an implementation of the method proposed in NovelD: A Simple yet Effective Explorat

29 Dec 05, 2022
Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch

Transformer in Transformer Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image c

Phil Wang 272 Dec 23, 2022
Bringing Characters to Life with Computer Brains in Unity

AI4Animation: Deep Learning for Character Control This project explores the opportunities of deep learning for character animation and control as part

Sebastian Starke 5.5k Jan 04, 2023
Pretrained Pytorch face detection (MTCNN) and recognition (InceptionResnet) models

Face Recognition Using Pytorch Python 3.7 3.6 3.5 Status This is a repository for Inception Resnet (V1) models in pytorch, pretrained on VGGFace2 and

Tim Esler 3.3k Jan 04, 2023
Centroid-UNet is deep neural network model to detect centroids from satellite images.

Centroid UNet - Locating Object Centroids in Aerial/Serial Images Introduction Centroid-UNet is deep neural network model to detect centroids from Aer

GIC-AIT 19 Dec 08, 2022