A multi-entity Transformer for multi-agent spatiotemporal modeling.

Overview

baller2vec

This is the repository for the paper:

Michael A. Alcorn and Anh Nguyen. baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotemporal Modeling. arXiv. 2021.

Left: the input for baller2vec at each time step t is an unordered set of feature vectors containing information about the identities and locations of NBA players on the court. Right: baller2vec generalizes the standard Transformer to the multi-entity setting by employing a novel self-attention mask tensor. The mask is then reshaped into a matrix for compatibility with typical Transformer implementations.
By exclusively learning to predict the trajectory of the ball, baller2vec was able to infer idiosyncratic player attributes.
Further, nearest neighbors in baller2vec's embedding space are plausible doppelgängers. Credit for the images: Erik Drost, Keith Allison, Jose Garcia, Keith Allison, Verse Photography, and Joe Glorioso.
Additionally, several attention heads in baller2vec appear to perform different basketball-relevant functions, such as anticipating passes. Code to generate the GIF was adapted from @linouk23's NBA Player Movement's repository.
Here, a baller2vec model trained to simultaneously predict the trajectories of all the players on the court uses both the historical and current context to forecast the target player's trajectory at each time step. The left grid shows the target player's true trajectory at each time step while the right grid shows baller2vec's forecast distribution. The blue-bordered center cell is the "stationary" trajectory.

Citation

If you use this code for your own research, please cite:

@article{alcorn2021baller2vec,
   title={baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotemporal Modeling},
   author={Alcorn, Michael A. and Nguyen, Anh},
   journal={arXiv preprint arXiv:1609.03675},
   year={2021}
}

Training baller2vec

Setting up .basketball_profile

After you've cloned the repository to your desired location, create a file called .basketball_profile in your home directory:

nano ~/.basketball_profile

and copy and paste in the contents of .basketball_profile, replacing each of the variable values with paths relevant to your environment. Next, add the following line to the end of your ~/.bashrc:

source ~/.basketball_profile

and either log out and log back in again or run:

source ~/.bashrc

You should now be able to copy and paste all of the commands in the various instructions sections. For example:

echo ${PROJECT_DIR}

should print the path you set for PROJECT_DIR in .basketball_profile.

Installing the necessary Python packages

cd ${PROJECT_DIR}
pip3 install --upgrade -r requirements.txt

Organizing the play-by-play and tracking data

  1. Copy events.zip (which I acquired from here [mirror here] using https://downgit.github.io) to the DATA_DIR directory and unzip it:
mkdir -p ${DATA_DIR}
cp ${PROJECT_DIR}/events.zip ${DATA_DIR}
cd ${DATA_DIR}
unzip -q events.zip
rm events.zip

Descriptions for the various EVENTMSGTYPEs can be found here (mirror here).

  1. Clone the tracking data from here (mirror here) to the DATA_DIR directory:
cd ${DATA_DIR}
git clone [email protected]:linouk23/NBA-Player-Movements.git

A description of the tracking data can be found here.

Generating the training data

cd ${PROJECT_DIR}
nohup python3 generate_game_numpy_arrays.py > data.log &

You can monitor its progress with:

top

or:

ls -U ${GAMES_DIR} | wc -l

There should be 1,262 NumPy arrays (corresponding to 631 X/y pairs) when finished.

Animating a sequence

  1. If you don't have a display hooked up to your GPU server, you'll need to first clone the repository to your local machine and retrieve certain files from the remote server:
# From your local machine.
mkdir -p ~/scratch
cd ~/scratch

username=michael
server=gpu3.cse.eng.auburn.edu
data_dir=/home/michael/baller2vec_data
scp ${username}@${server}:${data_dir}/baller2vec_config.pydict .

games_dir=${data_dir}/games
gameid=0021500622

scp ${username}@${server}:${games_dir}/\{${gameid}_X.npy,${gameid}_y.npy\} .
  1. You can then run this code in the Python interpreter from within the repository (make sure you source .basketball_profile first if running locally):
import os

from animator import Game
from settings import DATA_DIR, GAMES_DIR

gameid = "0021500622"
try:
    game = Game(DATA_DIR, GAMES_DIR, gameid)
except FileNotFoundError:
    home_dir = os.path.expanduser("~")
    DATA_DIR = f"{home_dir}/scratch"
    GAMES_DIR = f"{home_dir}/scratch"
    game = Game(DATA_DIR, GAMES_DIR, gameid)

# https://youtu.be/FRrh_WkyXko?t=109
start_period = 3
start_time = "1:55"
stop_period = 3
stop_time = "1:51"
game.show_seq(start_period, start_time, stop_period, stop_time)

to generate the following animation:

Running the training script

Run (or copy and paste) the following script, editing the variables as appropriate.

#!/usr/bin/env bash

# Experiment identifier. Output will be saved to ${EXPERIMENTS_DIR}/${JOB}.
JOB=$(date +%Y%m%d%H%M%S)

# Training options.
echo "train:" >> ${JOB}.yaml
task=ball_traj  # ball_traj, ball_loc, event, player_traj, score, or seq2seq.
echo "  task: ${task}" >> ${JOB}.yaml
echo "  min_playing_time: 0" >> ${JOB}.yaml  # 0/13314/39917/1.0e+6 --> 100%/75%/50%/0%.
echo "  train_valid_prop: 0.95" >> ${JOB}.yaml
echo "  train_prop: 0.95" >> ${JOB}.yaml
echo "  train_samples_per_epoch: 20000" >> ${JOB}.yaml
echo "  valid_samples: 1000" >> ${JOB}.yaml
echo "  workers: 10" >> ${JOB}.yaml
echo "  learning_rate: 1.0e-5" >> ${JOB}.yaml
if [[ ("$task" = "event") || ("$task" = "score") ]]
then
    prev_model=False
    echo "  prev_model: ${prev_model}" >> ${JOB}.yaml
    if [[ "$prev_model" != "False" ]]
    then
        echo "  patience: 5" >> ${JOB}.yaml
    fi
fi

# Dataset options.
echo "dataset:" >> ${JOB}.yaml
echo "  hz: 5" >> ${JOB}.yaml
echo "  secs: 4" >> ${JOB}.yaml
echo "  player_traj_n: 11" >> ${JOB}.yaml
echo "  max_player_move: 4.5" >> ${JOB}.yaml
echo "  ball_traj_n: 19" >> ${JOB}.yaml
echo "  max_ball_move: 8.5" >> ${JOB}.yaml
echo "  n_players: 10" >> ${JOB}.yaml
echo "  next_score_change_time_max: 35" >> ${JOB}.yaml
echo "  n_time_to_next_score_change: 36" >> ${JOB}.yaml
echo "  n_ball_loc_x: 95" >> ${JOB}.yaml
echo "  n_ball_loc_y: 51" >> ${JOB}.yaml
echo "  ball_future_secs: 2" >> ${JOB}.yaml

# Model options.
echo "model:" >> ${JOB}.yaml
echo "  embedding_dim: 20" >> ${JOB}.yaml
echo "  sigmoid: none" >> ${JOB}.yaml
echo "  mlp_layers: [128, 256, 512]" >> ${JOB}.yaml
echo "  nhead: 8" >> ${JOB}.yaml
echo "  dim_feedforward: 2048" >> ${JOB}.yaml
echo "  num_layers: 6" >> ${JOB}.yaml
echo "  dropout: 0.0" >> ${JOB}.yaml
if [[ "$task" != "seq2seq" ]]
then
    echo "  use_cls: False" >> ${JOB}.yaml
    echo "  embed_before_mlp: True" >> ${JOB}.yaml
fi

# Save experiment settings.
mkdir -p ${EXPERIMENTS_DIR}/${JOB}
mv ${JOB}.yaml ${EXPERIMENTS_DIR}/${JOB}/

# Start training the model.
gpu=0
cd ${PROJECT_DIR}
nohup python3 train_baller2vec.py ${JOB} ${gpu} > ${EXPERIMENTS_DIR}/${JOB}/train.log &
Owner
Michael A. Alcorn
Brute-forcing my way through life.
Michael A. Alcorn
My take on a practical implementation of Linformer for Pytorch.

Linformer Pytorch Implementation A practical implementation of the Linformer paper. This is attention with only linear complexity in n, allowing for v

Peter 349 Dec 25, 2022
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting This is the origin Pytorch implementation of Informer in the followin

Haoyi 3.1k Dec 29, 2022
Code used to generate the results appearing in "Train longer, generalize better: closing the generalization gap in large batch training of neural networks"

Train longer, generalize better - Big batch training This is a code repository used to generate the results appearing in "Train longer, generalize bet

Elad Hoffer 145 Sep 16, 2022
Least Square Calibration for Peer Reviews

Least Square Calibration for Peer Reviews Requirements gurobipy - for solving convex programs GPy - for Bayesian baseline numpy pandas To generate p

Sigma <a href=[email protected]"> 1 Nov 01, 2021
[ICML 2020] Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

PG-MORL This repository contains the implementation for the paper Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Contro

MIT Graphics Group 65 Jan 07, 2023
PyTorch implementation of SQN based on CloserLook3D's encoder

SQN_pytorch This repo is an implementation of Semantic Query Network (SQN) using CloserLook3D's encoder in Pytorch. For TensorFlow implementation, che

PointCloudYC 1 Oct 21, 2021
A CROSS-MODAL FUSION NETWORK BASED ON SELF-ATTENTION AND RESIDUAL STRUCTURE FOR MULTIMODAL EMOTION RECOGNITION

CFN-SR A CROSS-MODAL FUSION NETWORK BASED ON SELF-ATTENTION AND RESIDUAL STRUCTURE FOR MULTIMODAL EMOTION RECOGNITION The audio-video based multimodal

skeleton 15 Sep 26, 2022
Faster Convex Lipschitz Regression

Faster Convex Lipschitz Regression This reepository provides a python implementation of our Faster Convex Lipschitz Regression algorithm with GPU and

Ali Siahkamari 0 Nov 19, 2021
Code in conjunction with the publication 'Contrastive Representation Learning for Hand Shape Estimation'

HanCo Dataset & Contrastive Representation Learning for Hand Shape Estimation Code in conjunction with the publication: Contrastive Representation Lea

Computer Vision Group, Albert-Ludwigs-Universität Freiburg 38 Dec 13, 2022
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers

ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers Official implementation of ViewFormer. ViewFormer is a NeRF-free neural rend

Jonáš Kulhánek 169 Dec 30, 2022
This application explain how we can easily integrate Deepface framework with Python Django application

deepface_suite This application explain how we can easily integrate Deepface framework with Python Django application install redis cache install requ

Mohamed Naji Aboo 3 Apr 18, 2022
The fastai book, published as Jupyter Notebooks

English / Spanish / Korean / Chinese / Bengali / Indonesian The fastai book These notebooks cover an introduction to deep learning, fastai, and PyTorc

fast.ai 17k Jan 07, 2023
PIXIE: Collaborative Regression of Expressive Bodies

PIXIE: Collaborative Regression of Expressive Bodies [Project Page] This is the official Pytorch implementation of PIXIE. PIXIE reconstructs an expres

Yao Feng 331 Jan 04, 2023
Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples

Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples This repository is the official implementation of paper [Qimera: Data-free Q

Kanghyun Choi 21 Nov 03, 2022
[ACM MM 2019 Oral] Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation

Contents Cycle-In-Cycle GANs Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Acknowledgments Relat

Hao Tang 67 Dec 14, 2022
Marine debris detection with commercial satellite imagery and deep learning.

Marine debris detection with commercial satellite imagery and deep learning. Floating marine debris is a global pollution problem which threatens mari

Inter Agency Implementation and Advanced Concepts 56 Dec 16, 2022
Inference pipeline for our participation in the FeTA challenge 2021.

feta-inference Inference pipeline for our participation in the FeTA challenge 2021. Team name: TRABIT Installation Download the two folders in https:/

Lucas Fidon 2 Apr 13, 2022
Collections for the lasted paper about multi-view clustering methods (papers, codes)

Multi-View Clustering Papers Collections for the lasted paper about multi-view clustering methods (papers, codes). There also exists some repositories

Andrew Guan 10 Sep 20, 2022
A platform to display the carbon neutralization information for researchers, decision-makers, and other participants in the community.

Welcome to Carbon Insight Carbon Insight is a platform aiming to display the carbon neutralization roadmap for researchers, decision-makers, and other

Microsoft 14 Oct 24, 2022