Pytorch implementation of SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation

Overview

PWC

PWC

PWC

SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation

Efficient Self-Ensemble Framework for Semantic Segmentation by Walid Bousselham, Guillaume Thibault, Lucas Pagano, Archana Machireddy, Joe Gray, Young Hwan Chang and Xubo Song.

This repository contains the official Pytorch implementation of training & evaluation code and the pretrained models for SenFormer.


๐Ÿ’พ Code Snippet (SenFormer)| โŒจ๏ธ Code Snippet (FPNT)| ๐Ÿ“œ Paper | ่ฎบๆ–‡

๐Ÿ”จ Installation

Conda environment

  • Clone this repository and enter it: git clone [email protected]:WalBouss/SenFormer.git && cd SenFormer.
  • Create a conda environment conda create -n senformer python=3.8, and activate it conda activate senformer.
  • Install Pytorch and torchvision conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.2 -c pytorch โ€” (you may also switch to other version by specifying the version number).
  • Install MMCV library pip install mmcv-full==1.4.0
  • Install MMSegmentation library by running pip install -e . in SenFormer directory.
  • Install other requirements pip install timm einops

Here is a full script for setting up a conda environment to use SenFormer (with CUDA 10.2 and pytorch 1.7.1):

conda create -n senformer python=3.8
conda activate senformer
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.2 -c pytorch

git clone [email protected]:WalBouss/SenFormer.git && cd SenFormer
pip install mmcv-full==1.4.0
pip install -e .
pip install timm einops

Datasets

For datasets preparations please refer to MMSegmentation guidelines.

Pretrained weights

ResNet pretrained weights will be automatically downloaded before training.

For Swin Transformer ImageNet pretrained weights, you can either:

  • run bash tools/download_swin_weights.sh in SenFormer project to download all Swin Transformer pretrained weights (it will place weights under pretrain/ folder ).
  • download desired backbone weights here: Swin-T, Swin-S, Swin-B, Swin-L and place them under pretrain/ folder.
  • download weights from official repository then, convert them to mmsegmentation format following mmsegmentation guidelines.

๐ŸŽฏ Model Zoo

SenFormer models with ResNet and Swin's backbones and ADE20K, COCO-Stuff 10K, Pascal Context and Cityscapes.

ADE20K

Backbone mIoU mIoU (MS) #params FLOPs Resolution Download
ResNet-50 44.6 45.6 144M 179G 512x512 model config
ResNet-101 46.5 47.0 163M 199G 512x512 model config
Swin-Tiny 46.0 46.4 144M 179G 512x512 model config
Swin-Small 49.2 50.4 165M 202G 512x512 model config
Swin-Base 51.8 53.2 204M 242G 640x640 model config
Swin-Large 53.1 54.2 314M 546G 640x640 model config

COCO-Stuff 10K

Backbone mIoU mIoU (MS) #params Resolution Download
ResNet-50 39.0 39.7 144M 512x512 model config
ResNet-101 39.6 40.6 163M 512x512 model config
Swin-Large 49.1 50.1 314M 512x512 model config

Pascal Context

Backbone mIoU mIoU (MS) #params Resolution Download
ResNet-50 53.2 54.3 144M 480x480 model config
ResNet-101 55.1 56.6 163M 480x480 model config
Swin-Large 62.4 64.0 314M 480x480 model config

Cityscapes

Backbone mIoU mIoU (MS) #params Resolution Download
ResNet-50 78.8 80.1 144M 512x1024 model config
ResNet-101 80.3 81.4 163M 512x1024 model config
Swin-Large 82.2 83.3 314M 512x1024 model config

๐Ÿ”ญ Inference

Download one checkpoint weights from above, for example SenFormer with ResNet-50 backbone on ADE20K:

Inference on a dataset

# Single-gpu testing
python tools/test.py senformer_configs/senformer/ade20k/senformer_fpnt_r50_512x512_160k_ade20k.py /path/to/checkpoint_file

# Multi-gpu testing
./tools/dist_test.sh senformer_configs/senformer/ade20k/senformer_fpnt_r50_512x512_160k_ade20k.py /path/to/checkpoint_file <GPU_NUM>

# Multi-gpu, multi-scale testing
tools/dist_test.sh senformer_configs/senformer/ade20k/senformer_fpnt_r50_512x512_160k_ade20k.py /path/to/checkpoint_file <GPU_NUM> --aug-test

Inference on custom data

To generate segmentation maps for your own data, run the following command:

python demo/image_demo.py ${IMAGE_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE}

Run python demo/image_demo.py --help for additional options.

๐Ÿ”ฉ Training

Follow above instructions to download ImageNet pretrained weights for backbones and run one of the following command:

# Single-gpu training
python tools/train.py path/to/model/config 

# Multi-gpu training
./tools/dist_train.sh path/to/model/config <GPU_NUM>

For example to train SenFormer with a ResNet-50 as backbone on ADE20K:

# Single-gpu training
python tools/train.py senformer_configs/senformer/ade20k/senformer_fpnt_r50_512x512_160k_ade20k.py 

# Multi-gpu training
./tools/dist_train.sh senformer_configs/senformer/ade20k/senformer_fpnt_r50_512x512_160k_ade20k.py <GPU_NUM>

Note that the default learning rate and training schedule is for an effective batch size of 16, (e.g. 8 GPUs & 2 imgs/gpu).

โญ Acknowledgement

This code is build using MMsegmentation library as codebase and uses timm and einops as well.

๐Ÿ“š Citation

If you find this repository useful, please consider citing our work ๐Ÿ“ and giving a star ๐ŸŒŸ :

@article{bousselham2021senformer,
  title={Efficient Self-Ensemble Framework for Semantic Segmentation},
  author={Walid Bousselham, Guillaume Thibault, Lucas Pagano, Archana Machireddy, Joe Gray, Young Hwan Chang, Xubo Song},
  journal={arXiv preprint arXiv:2111.13280},
  year={2021}
}
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.

Overview BisQue is a web-based platform specifically designed to provide researchers with organizational and quantitative analysis tools for up to 5D

Vision Research Lab @ UCSB 26 Nov 29, 2022
This project helps to colorize grayscale images using multiple exemplars.

Multiple Exemplar-based Deep Colorization (Pytorch Implementation) Pretrained Model [Jitendra Chautharia](IIT Jodhpur)1,3, Prerequisites Python 3.6+ N

jitendra chautharia 3 Aug 05, 2022
[Machine Learning Engineer Basic Guide] ๋ถ€์ŠคํŠธ์บ ํ”„ AI Tech - Product Serving ์ž๋ฃŒ

Boostcamp-AI-Tech-Product-Serving ๋ถ€์ŠคํŠธ์บ ํ”„ AI Tech - Product Serving ์ž๋ฃŒ Repository ๊ตฌ์กฐ part1(MLOps ๊ฐœ๋ก , Model Serving, ๋จธ์‹ ๋Ÿฌ๋‹ ํ”„๋กœ์ ํŠธ ๋ผ์ดํ”„ ์‚ฌ์ดํด์€ ๋ณ„๋„์˜ ์ฝ”๋“œ๊ฐ€ ์—†์œผ๋ฉฐ, part

Sung Yun Byeon 269 Dec 21, 2022
[CVPR 2020] Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Dec 29, 2022
This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning

This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning It includes /bert, which is the original BERT repos

Mitchell Gordon 11 Nov 15, 2022
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis

Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre

Liming Jiang 460 Jan 04, 2023
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models Jonathan Ho, Ajay Jain, Pieter Abbeel Paper: https://arxiv.org/abs/2006.11239 Website: https://hojonathanho.g

Jonathan Ho 1.5k Jan 08, 2023
Bare bones use-case for deploying a containerized web app (built in streamlit) on AWS.

Containerized Streamlit web app This repository is featured in a 3-part series on Deploying web apps with Streamlit, Docker, and AWS. Checkout the blo

Collin Prather 62 Jan 02, 2023
Let's Git - Versionsverwaltung & Open Source Hausaufgabe

Let's Git - Versionsverwaltung & Open Source Hausaufgabe Herzlich Willkommen zu dieser Hausaufgabe fรผr unseren MOOC: Let's Git! Wir hoffen, dass Du vi

1 Dec 13, 2021
A Large Scale Benchmark for Individual Treatment Effect Prediction and Uplift Modeling

large-scale-ITE-UM-benchmark This repository contains code and data to reproduce the results of the paper "A Large Scale Benchmark for Individual Trea

10 Nov 19, 2022
PPO is a very popular Reinforcement Learning algorithm at present.

PPO is a very popular Reinforcement Learning algorithm at present. OpenAI takes PPO as the current baseline algorithm. We use the PPO algorithm to train a policy to give the best action in any situat

Rosefintech 11 Aug 23, 2021
:fire: 2D and 3D Face alignment library build using pytorch

Face Recognition Detect facial landmarks from Python using the world's most accurate face alignment network, capable of detecting points in both 2D an

Adrian Bulat 6k Dec 31, 2022
ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Introduction PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning]. @inproceedings{lee2021i

Kibok Lee 68 Nov 27, 2022
Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled - "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek"

Ancient Greek BERT The first and only available Ancient Greek sub-word BERT model! State-of-the-art post fine-tuning on Part-of-Speech Tagging and Mor

Pranaydeep Singh 22 Dec 08, 2022
MiraiML: asynchronous, autonomous and continuous Machine Learning in Python

MiraiML Mirai: future in japanese. MiraiML is an asynchronous engine for continuous & autonomous machine learning, built for real-time usage. Usage In

Arthur Paulino 25 Jul 27, 2022
Neural Oblivious Decision Ensembles

Neural Oblivious Decision Ensembles A supplementary code for anonymous ICLR 2020 submission. What does it do? It learns deep ensembles of oblivious di

25 Sep 21, 2022
Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting Official PyTorch Implementation of paper "NeLF: Neural Light-tran

Ken Lin 38 Dec 26, 2022
A stock generator that assess a list of stocks and returns the best stocks for investing and money allocations based on users choices of volatility, duration and number of stocks

Stock-Generator Please visit "Stock Generator.ipynb" for a clearer view and "Stock Generator.py" for scripts. The stock generator is designed to allow

jmengnyay 1 Aug 02, 2022
Toward Spatially Unbiased Generative Models (ICCV 2021)

Toward Spatially Unbiased Generative Models Implementation of Toward Spatially Unbiased Generative Models (ICCV 2021) Overview Recent image generation

Jooyoung Choi 88 Dec 01, 2022
Pytorch implementation of

EfficientTTS Unofficial Pytorch implementation of "EfficientTTS: An Efficient and High-Quality Text-to-Speech Architecture"(arXiv). Disclaimer: Somebo

Liu Songxiang 109 Nov 16, 2022