SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning

Overview

Datasets | Website | Raw Data | OpenReview

SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning

Christopher Yeh, Chenlin Meng, Sherrie Wang, Anne Driscoll, Erik Rozi, Patrick Liu, Jihyeon Lee, Marshall Burke, David B. Lobell, Stefano Ermon

California Institute of Technology, Stanford University, and UC Berkeley

SustainBench is a collection of 15 benchmark tasks across 7 SDGs, including tasks related to economic development, agriculture, health, education, water and sanitation, climate action, and life on land. Datasets for 11 of the 15 tasks are released publicly for the first time. Our goals for SustainBench are to

  1. lower the barriers to entry for the machine learning community to contribute to measuring and achieving the SDGs;
  2. provide standard benchmarks for evaluating machine learning models on tasks across a variety of SDGs; and
  3. encourage the development of novel machine learning methods where improved model performance facilitates progress towards the SDGs.

Table of Contents

Overview

SustainBench provides datasets and standardized benchmarks for 15 SDG-related tasks, listed below. Details for each dataset and task can be found in our paper and on our website. The raw data can be downloaded from Google Drive and is released under a CC-BY-SA 4.0 license.

  • SDG 1: No Poverty
    • Task 1A: Predicting poverty over space
    • Task 1B: Predicting change in poverty over time
  • SDG 2: Zero Hunger
  • SDG 3: Good Health and Well-being
  • SDG 4: Quality Education
    • Task 4A: Women educational attainment
  • SDG 6: Clean Water and Sanitation
  • SDG 13: Climate Action
  • SDG 15: Life on Land
    • Task 15A: Feature learning for land cover classification
    • Task 15B: Out-of-domain land cover classification

Dataloaders

For each dataset, we provide Python dataloaders that load the data as PyTorch tensors. Please see the sustainbench folder as well as our website for detailed documentation.

Running Baseline Models

We provide baseline models for many of the benchmark tasks included in SustainBench. See the baseline_models folder for the code and detailed instructions to reproduce our results.

Dataset Preprocessing

11 of the 15 SustainBench benchmark tasks involve data that is being publicly released for the first time. We release the processed versions of our datasets on Google Drive. However, we also provide code and detailed instructions for how we preprocessed the datasets in the dataset_preprocessing folder. You do NOT need anything from the dataset_preprocessing folder for downloading the processed datasets or running our baseline models.

Computing Requirements

This code was tested on a system with the following specifications:

  • operating system: Ubuntu 16.04.7 LTS
  • CPU: Intel(R) Xeon(R) CPU E5-2620 v4
  • memory (RAM): 125 GB
  • disk storage: 5 TB
  • GPU: NVIDIA P100 GPU

The main software requirements are Python 3.7 with TensorFlow r1.15, PyTorch 1.9, and R 4.1. The complete list of required packages and library are listed in the two conda environment YAML files (env_create.yml and env_bench.yml), which are meant to be used with conda (version 4.10). See here for instructions on installing conda via Miniconda. Once conda is installed, run one of the following commands to set up the desired conda environment:

conda env update -f env_create.yml --prune
conda env update -f env_bench.yml --prune

The conda environment files default to CPU-only packages. If you have a GPU, please comment/uncomment the appropriate lines in the environment files; you may need to also install CUDA 10 or 11 and cuDNN 7.

Code Formatting and Type Checking

This repo uses flake8 for Python linting and mypy for type-checking. Configuration files for each are included in this repo: .flake8 and mypy.ini.

To run either code linting or type checking, set the current directory to the repo root directory. Then run any of the following commands:

# LINTING
# =======

# entire repo
flake8

# all modules within utils directory
flake8 utils

# a single module
flake8 path/to/module.py

# a jupyter notebook - ignore these error codes, in addition to the ignored codes in .flake8:
# - E305: expected 2 blank lines after class or function definition
# - E402: Module level import not at top of file
# - F404: from __future__ imports must occur at the beginning of the file
# - W391: Blank line at end of file
jupyter nbconvert path/to/notebook.ipynb --stdout --to script | flake8 - --extend-ignore=E305,E402,F404,W391


# TYPE CHECKING
# =============

# entire repo
mypy .

# all modules within utils directory
mypy -p utils

# a single module
mypy path/to/module.py

# a jupyter notebook
mypy -c "$(jupyter nbconvert path/to/notebook.ipynb --stdout --to script)"

Citation

Please cite this article as follows, or use the BibTeX entry below.

C. Yeh, C. Meng, S. Wang, A. Driscoll, E. Rozi, P. Liu, J. Lee, M. Burke, D. B. Lobell, and S. Ermon, "SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning," in Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2), Dec. 2021. [Online]. Available: https://openreview.net/forum?id=5HR3vCylqD.

@inproceedings{
    yeh2021sustainbench,
    title = {{SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning}},
    author = {Christopher Yeh and Chenlin Meng and Sherrie Wang and Anne Driscoll and Erik Rozi and Patrick Liu and Jihyeon Lee and Marshall Burke and David B. Lobell and Stefano Ermon},
    booktitle = {Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)},
    year = {2021},
    month = {12},
    url = {https://openreview.net/forum?id=5HR3vCylqD}
}
Autonomous Robots Kalman Filters

Autonomous Robots Kalman Filters The Kalman Filter is an easy topic. However, ma

20 Jul 18, 2022
Propose a principled and practically effective framework for unsupervised accuracy estimation and error detection tasks with theoretical analysis and state-of-the-art performance.

Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles This project is for the paper: Detecting Errors and Estimating

Jiefeng Chen 13 Nov 21, 2022
Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback

CoSMo.pytorch Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback, Seungmin Lee*, Dongwan Kim*, Bohyung

Seung Min Lee 54 Dec 08, 2022
Navigating StyleGAN2 w latent space using CLIP

Navigating StyleGAN2 w latent space using CLIP an attempt to build sth with the official SG2-ADA Pytorch impl kinda inspired by Generating Images from

Mike K. 55 Dec 06, 2022
Official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models.

GLIDE This is the official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing w

OpenAI 2.9k Jan 04, 2023
A production-ready, scalable Indexer for the Jina neural search framework, based on HNSW and PSQL

🌟 HNSW + PostgreSQL Indexer HNSWPostgreSQLIndexer Jina is a production-ready, scalable Indexer for the Jina neural search framework. It combines the

Jina AI 25 Oct 14, 2022
Official implementation of the article "Unsupervised JPEG Domain Adaptation For Practical Digital Forensics"

Unsupervised JPEG Domain Adaptation for Practical Digital Image Forensics @WIFS2021 (Montpellier, France) Rony Abecidan, Vincent Itier, Jeremie Boulan

Rony Abecidan 6 Jan 06, 2023
A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

Korbinian Pöppel 47 Nov 28, 2022
Code to reproduce the results in "Visually Grounded Reasoning across Languages and Cultures", EMNLP 2021.

marvl-code [WIP] This is the implementation of the approaches described in the paper: Fangyu Liu*, Emanuele Bugliarello*, Edoardo M. Ponti, Siva Reddy

25 Nov 15, 2022
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 01, 2023
A minimal implementation of Gaussian process regression in PyTorch

pytorch-minimal-gaussian-process In search of truth, simplicity is needed. There exist heavy-weighted libraries, but as you know, we need to go bare b

Sangwoong Yoon 38 Nov 25, 2022
Projecting interval uncertainty through the discrete Fourier transform

Projecting interval uncertainty through the discrete Fourier transform This repo

1 Mar 02, 2022
Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving

SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving Abstract In this paper, we introduce SalsaNext f

308 Jan 04, 2023
Implementation of SegNet: A Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-Wise Labelling

Caffe SegNet This is a modified version of Caffe which supports the SegNet architecture As described in SegNet: A Deep Convolutional Encoder-Decoder A

Alex Kendall 1.1k Jan 02, 2023
An implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional Neural Network"

Retina Blood Vessels Segmentation This is an implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional

Srijarko Roy 23 Aug 20, 2022
A toolkit for Lagrangian-based constrained optimization in Pytorch

Cooper About Cooper is a toolkit for Lagrangian-based constrained optimization in Pytorch. This library aims to encourage and facilitate the study of

Cooper 34 Jan 01, 2023
Prososdy Morph: A python library for manipulating pitch and duration in an algorithmic way, for resynthesizing speech.

ProMo (Prosody Morph) Questions? Comments? Feedback? Chat with us on gitter! A library for manipulating pitch and duration in an algorithmic way, for

Tim 71 Jan 02, 2023
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these enviro

Google 1.5k Jan 02, 2023
Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Ibai Gorordo 35 Sep 07, 2022
Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Duong H. Le 18 Jun 13, 2022