SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning

Overview

Datasets | Website | Raw Data | OpenReview

SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning

Christopher Yeh, Chenlin Meng, Sherrie Wang, Anne Driscoll, Erik Rozi, Patrick Liu, Jihyeon Lee, Marshall Burke, David B. Lobell, Stefano Ermon

California Institute of Technology, Stanford University, and UC Berkeley

SustainBench is a collection of 15 benchmark tasks across 7 SDGs, including tasks related to economic development, agriculture, health, education, water and sanitation, climate action, and life on land. Datasets for 11 of the 15 tasks are released publicly for the first time. Our goals for SustainBench are to

  1. lower the barriers to entry for the machine learning community to contribute to measuring and achieving the SDGs;
  2. provide standard benchmarks for evaluating machine learning models on tasks across a variety of SDGs; and
  3. encourage the development of novel machine learning methods where improved model performance facilitates progress towards the SDGs.

Table of Contents

Overview

SustainBench provides datasets and standardized benchmarks for 15 SDG-related tasks, listed below. Details for each dataset and task can be found in our paper and on our website. The raw data can be downloaded from Google Drive and is released under a CC-BY-SA 4.0 license.

  • SDG 1: No Poverty
    • Task 1A: Predicting poverty over space
    • Task 1B: Predicting change in poverty over time
  • SDG 2: Zero Hunger
  • SDG 3: Good Health and Well-being
  • SDG 4: Quality Education
    • Task 4A: Women educational attainment
  • SDG 6: Clean Water and Sanitation
  • SDG 13: Climate Action
  • SDG 15: Life on Land
    • Task 15A: Feature learning for land cover classification
    • Task 15B: Out-of-domain land cover classification

Dataloaders

For each dataset, we provide Python dataloaders that load the data as PyTorch tensors. Please see the sustainbench folder as well as our website for detailed documentation.

Running Baseline Models

We provide baseline models for many of the benchmark tasks included in SustainBench. See the baseline_models folder for the code and detailed instructions to reproduce our results.

Dataset Preprocessing

11 of the 15 SustainBench benchmark tasks involve data that is being publicly released for the first time. We release the processed versions of our datasets on Google Drive. However, we also provide code and detailed instructions for how we preprocessed the datasets in the dataset_preprocessing folder. You do NOT need anything from the dataset_preprocessing folder for downloading the processed datasets or running our baseline models.

Computing Requirements

This code was tested on a system with the following specifications:

  • operating system: Ubuntu 16.04.7 LTS
  • CPU: Intel(R) Xeon(R) CPU E5-2620 v4
  • memory (RAM): 125 GB
  • disk storage: 5 TB
  • GPU: NVIDIA P100 GPU

The main software requirements are Python 3.7 with TensorFlow r1.15, PyTorch 1.9, and R 4.1. The complete list of required packages and library are listed in the two conda environment YAML files (env_create.yml and env_bench.yml), which are meant to be used with conda (version 4.10). See here for instructions on installing conda via Miniconda. Once conda is installed, run one of the following commands to set up the desired conda environment:

conda env update -f env_create.yml --prune
conda env update -f env_bench.yml --prune

The conda environment files default to CPU-only packages. If you have a GPU, please comment/uncomment the appropriate lines in the environment files; you may need to also install CUDA 10 or 11 and cuDNN 7.

Code Formatting and Type Checking

This repo uses flake8 for Python linting and mypy for type-checking. Configuration files for each are included in this repo: .flake8 and mypy.ini.

To run either code linting or type checking, set the current directory to the repo root directory. Then run any of the following commands:

# LINTING
# =======

# entire repo
flake8

# all modules within utils directory
flake8 utils

# a single module
flake8 path/to/module.py

# a jupyter notebook - ignore these error codes, in addition to the ignored codes in .flake8:
# - E305: expected 2 blank lines after class or function definition
# - E402: Module level import not at top of file
# - F404: from __future__ imports must occur at the beginning of the file
# - W391: Blank line at end of file
jupyter nbconvert path/to/notebook.ipynb --stdout --to script | flake8 - --extend-ignore=E305,E402,F404,W391


# TYPE CHECKING
# =============

# entire repo
mypy .

# all modules within utils directory
mypy -p utils

# a single module
mypy path/to/module.py

# a jupyter notebook
mypy -c "$(jupyter nbconvert path/to/notebook.ipynb --stdout --to script)"

Citation

Please cite this article as follows, or use the BibTeX entry below.

C. Yeh, C. Meng, S. Wang, A. Driscoll, E. Rozi, P. Liu, J. Lee, M. Burke, D. B. Lobell, and S. Ermon, "SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning," in Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2), Dec. 2021. [Online]. Available: https://openreview.net/forum?id=5HR3vCylqD.

@inproceedings{
    yeh2021sustainbench,
    title = {{SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning}},
    author = {Christopher Yeh and Chenlin Meng and Sherrie Wang and Anne Driscoll and Erik Rozi and Patrick Liu and Jihyeon Lee and Marshall Burke and David B. Lobell and Stefano Ermon},
    booktitle = {Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)},
    year = {2021},
    month = {12},
    url = {https://openreview.net/forum?id=5HR3vCylqD}
}
The 2nd place solution of 2021 google landmark retrieval on kaggle.

Google_Landmark_Retrieval_2021_2nd_Place_Solution The 2nd place solution of 2021 google landmark retrieval on kaggle. Environment We use cuda 11.1/pyt

229 Dec 13, 2022
An open-source Deep Learning Engine for Healthcare that aims to treat & prevent major diseases

AlphaCare Background AlphaCare is a work-in-progress, open-source Deep Learning Engine for Healthcare that aims to treat and prevent major diseases. T

Siraj Raval 44 Nov 05, 2022
A little Python application to auto tag your photos with the power of machine learning.

Tag Machine A little Python application to auto tag your photos with the power of machine learning. Report a bug or request a feature Table of Content

Florian Torres 14 Dec 21, 2022
Code for generating a single image pretraining dataset

Single Image Pretraining of Visual Representations As shown in the paper A critical analysis of self-supervision, or what we can learn from a single i

Yuki M. Asano 12 Dec 19, 2022
Code release for ICCV 2021 paper "Anticipative Video Transformer"

Anticipative Video Transformer Ranked first in the Action Anticipation task of the CVPR 2021 EPIC-Kitchens Challenge! (entry: AVT-FB-UT) [project page

Facebook Research 123 Dec 13, 2022
CLEAR algorithm for multi-view data association

CLEAR: Consistent Lifting, Embedding, and Alignment Rectification Algorithm The Matlab, Python, and C++ implementation of the CLEAR algorithm, as desc

MIT Aerospace Controls Laboratory 30 Jan 02, 2023
MiniSom is a minimalistic implementation of the Self Organizing Maps

MiniSom Self Organizing Maps MiniSom is a minimalistic and Numpy based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial N

Giuseppe Vettigli 1.2k Jan 03, 2023
An SE(3)-invariant autoencoder for generating the periodic structure of materials

Crystal Diffusion Variational AutoEncoder This software implementes Crystal Diffusion Variational AutoEncoder (CDVAE), which generates the periodic st

Tian Xie 94 Dec 10, 2022
Mini Software that give reminder to drink water as per your weight.

Water Notification Desktop Python The Mini Software built in Python (tkinter) that will remind you to drink water on specific time span based on your

Om Jogani 5 Dec 16, 2022
A simple and extensible library to create Bayesian Neural Network layers on PyTorch.

Blitz - Bayesian Layers in Torch Zoo BLiTZ is a simple and extensible library to create Bayesian Neural Network Layers (based on whats proposed in Wei

Pi Esposito 722 Jan 08, 2023
Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

StochFuzz: A New Solution for Binary-only Fuzzing StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries.

Zhuo Zhang 164 Dec 05, 2022
This repo contains the code and data used in the paper "Wizard of Search Engine: Access to Information Through Conversations with Search Engines"

Wizard of Search Engine: Access to Information Through Conversations with Search Engines by Pengjie Ren, Zhongkun Liu, Xiaomeng Song, Hongtao Tian, Zh

19 Oct 27, 2022
Motion Reconstruction Code and Data for Skills from Videos (SFV)

Motion Reconstruction Code and Data for Skills from Videos (SFV) This repo contains the data and the code for motion reconstruction component of the S

268 Dec 01, 2022
Azua - build AI algorithms to aid efficient decision-making with minimum data requirements.

Project Azua 0. Overview Many modern AI algorithms are known to be data-hungry, whereas human decision-making is much more efficient. The human can re

Microsoft 197 Jan 06, 2023
A Small and Easy approach to the BraTS2020 dataset (2D Segmentation)

BraTS2020 A Light & Scalable Solution to BraTS2020 | Medical Brain Tumor Segmentation (2D Segmentation) Developed the segmentation models for segregat

Gunjan Haldar 0 Jan 19, 2022
[arXiv'22] Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation

Panoptic NeRF Project Page | Paper | Dataset Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation Xiao Fu*, Shangzhan zhang*,

Xiao Fu 111 Dec 16, 2022
Code for "NeRS: Neural Reflectance Surfaces for Sparse-View 3D Reconstruction in the Wild," in NeurIPS 2021

Code for Neural Reflectance Surfaces (NeRS) [arXiv] [Project Page] [Colab Demo] [Bibtex] This repo contains the code for NeRS: Neural Reflectance Surf

Jason Y. Zhang 234 Dec 30, 2022
The Empirical Investigation of Representation Learning for Imitation (EIRLI)

The Empirical Investigation of Representation Learning for Imitation (EIRLI)

Center for Human-Compatible AI 31 Nov 06, 2022
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

peng gao 42 Nov 26, 2022
BED: A Real-Time Object Detection System for Edge Devices

BED: A Real-Time Object Detection System for Edge Devices About this project Thi

Data Analytics Lab at Texas A&M University 44 Nov 18, 2022