Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR

Overview

Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR

This paper has been accepted by Conference on Robot Learning 2021.

By Ziyue Feng, Longlong Jing, Peng Yin, Yingli Tian, and Bing Li.

Arxiv: Link YouTube: link Slides: Link

image

image

Abstract

Self-supervised monocular depth prediction provides a cost-effective solution to obtain the 3D location of each pixel. However, the existing approaches usually lead to unsatisfactory accuracy, which is critical for autonomous robots. In this paper, we propose a novel two-stage network to advance the self-supervised monocular dense depth learning by leveraging low-cost sparse (e.g. 4-beam) LiDAR. Unlike the existing methods that use sparse LiDAR mainly in a manner of time-consuming iterative post-processing, our model fuses monocular image features and sparse LiDAR features to predict initial depth maps. Then, an efficient feed-forward refine network is further designed to correct the errors in these initial depth maps in pseudo-3D space with real-time performance. Extensive experiments show that our proposed model significantly outperforms all the state-of-the-art self-supervised methods, as well as the sparse-LiDAR-based methods on both self-supervised monocular depth prediction and completion tasks. With the accurate dense depth prediction, our model outperforms the state-of-the-art sparse-LiDAR-based method (Pseudo-LiDAR++) by more than 68% for the downstream task monocular 3D object detection on the KITTI Leaderboard.

⚙️ Setup

You can install the dependencies with:

conda create -n depth python=3.6.6
conda activate depth
conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c conda-forge
pip install tensorboardX==1.4
conda install opencv=3.3.1   # just needed for evaluation
pip install open3d
pip install wandb
pip install scikit-image

We ran our experiments with PyTorch 1.8.0, CUDA 11.1, Python 3.6.6 and Ubuntu 18.04.

💾 KITTI Data Prepare

Download Data

You need to first download the KITTI RAW dataset, put in the kitti_data folder.

Our default settings expect that you have converted the png images to jpeg with this command, which also deletes the raw KITTI .png files:

find kitti_data/ -name '*.png' | parallel 'convert -quality 92 -sampling-factor 2x2,1x1,1x1 {.}.png {.}.jpg && rm {}'

or you can skip this conversion step and train from raw png files by adding the flag --png when training, at the expense of slower load times.

Preprocess Data

# bash prepare_1beam_data_for_prediction.sh
# bash prepare_2beam_data_for_prediction.sh
# bash prepare_3beam_data_for_prediction.sh
bash prepare_4beam_data_for_prediction.sh
# bash prepare_r100.sh # random sample 100 LiDAR points
# bash prepare_r200.sh # random sample 200 LiDAR points

Training

By default models and tensorboard event files are saved to log/mdp/.

Depth Prediction:

python trainer.py
python inf_depth_map.py --need_path
python inf_gdc.py
python refiner.py

Depth Completion:

Please first download the KITTI Completion dataset.

python completor.py

Monocular 3D Object Detection:

Please first download the KITTI 3D Detection dataset.

python export_detection.py

Then you can train the PatchNet based on the exported depth maps.

📊 KITTI evaluation

python evaluate_depth.py
python evaluate_completion.py

Citation

@article{feng2021advancing,
  title={Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR},
  author={Feng, Ziyue and Jing, Longlong and Yin, Peng and Tian, Yingli and Li, Bing},
  journal={arXiv preprint arXiv:2109.09628},
  year={2021}
}

Reference

Our code is based on the Monodepth2: https://github.com/nianticlabs/monodepth2

Owner
Ziyue Feng
Computer Vision, Autonomous Driving, Machine Learning, Deep Learning
Ziyue Feng
Create and implement a deep learning library from scratch.

In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The Proj

Rishabh Bali 22 Aug 23, 2022
improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea

310 Dec 28, 2022
Neural Scene Flow Prior (NeurIPS 2021 spotlight)

Neural Scene Flow Prior Xueqian Li, Jhony Kaesemodel Pontes, Simon Lucey Will appear on Thirty-fifth Conference on Neural Information Processing Syste

Lilac Lee 85 Jan 03, 2023
Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting" by Shu et al.

[Re] Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping

Robert Cedergren 1 Mar 13, 2020
Self-Supervised Pillar Motion Learning for Autonomous Driving (CVPR 2021)

Self-Supervised Pillar Motion Learning for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Self-Supervised Pillar Motion Learning for Autono

QCraft 101 Dec 05, 2022
PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch.

snn-localization repo PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch. Install Dependencies Orig

Sami BARCHID 1 Jan 06, 2022
Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation

Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation Prerequisites This repo is built upon a local copy of transfo

Jixuan Wang 10 Sep 28, 2022
PyTorch implementation for Partially View-aligned Representation Learning with Noise-robust Contrastive Loss (CVPR 2021)

2021-CVPR-MvCLN This repo contains the code and data of the following paper accepted by CVPR 2021 Partially View-aligned Representation Learning with

XLearning Group 33 Nov 01, 2022
Volsdf - Volume Rendering of Neural Implicit Surfaces

Volume Rendering of Neural Implicit Surfaces Project Page | Paper | Data This re

Lior Yariv 221 Jan 07, 2023
Training Cifar-10 Classifier Using VGG16

opevcvdl-hw3 This project uses pytorch and Qt to achieve the requirements. Version Python 3.6 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.

Kenny Cheng 3 Aug 17, 2022
Python utility to generate filesystem content for Obsidian.

Security Vault Generator Quickly parse, format, and output common frameworks/content for Obsidian.md. There is a strong focus on MITRE ATT&CK because

Justin Angel 73 Dec 02, 2022
2021 National Underwater Robotics Vision Optics

2021-National-Underwater-Robotics-Vision-Optics 2021年全国水下机器人算法大赛-光学赛道-B榜精度第18名 (Kilian_Di的团队:A榜[email pro

Di Chang 9 Nov 04, 2022
All the code and files related to the MI-Lab of UE19CS305 course in sem 5

Machine-Intelligence-Lab-CS305 The compilation of all the code an drelated files from MI-Lab UE19CS305 (of batch 2019-2023) offered by PES University

Arvind Krishna 3 Nov 10, 2022
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

Yunjey Choi 5.1k Dec 30, 2022
MonoRCNN is a monocular 3D object detection method for automonous driving

MonoRCNN MonoRCNN is a monocular 3D object detection method for automonous driving, published at ICCV 2021. This project is an implementation of MonoR

87 Dec 27, 2022
Official code release for "GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis"

GRAF This repository contains official code for the paper GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. You can find detailed usage i

349 Dec 29, 2022
Code release of paper Improving neural implicit surfaces geometry with patch warping

NeuralWarp: Improving neural implicit surfaces geometry with patch warping Project page | Paper Code release of paper Improving neural implicit surfac

François Darmon 167 Dec 30, 2022
NAACL2021 - COIL Contextualized Lexical Retriever

COIL Repo for our NAACL paper, COIL: Revisit Exact Lexical Match in Information Retrieval with Contextualized Inverted List. The code covers learning

Luyu Gao 108 Dec 31, 2022
BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization

BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization Authors: Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong,

Salesforce 125 Dec 31, 2022
(CVPR 2022 Oral) Official implementation for "Surface Representation for Point Clouds"

RepSurf - Surface Representation for Point Clouds [CVPR 2022 Oral] By Haoxi Ran* , Jun Liu, Chengjie Wang ( * : corresponding contact) The pytorch off

Haoxi Ran 264 Dec 23, 2022