An Implementation of Fully Convolutional Networks in Tensorflow.

Overview

Update

An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository.

tensorflow-fcn

This is a one file Tensorflow implementation of Fully Convolutional Networks in Tensorflow. The code can easily be integrated in your semantic segmentation pipeline. The network can be applied directly or finetuned to perform semantic segmentation using tensorflow training code.

Deconvolution Layers are initialized as bilinear upsampling. Conv and FCN layer weights using VGG weights. Numpy load is used to read VGG weights. No Caffe or Caffe-Tensorflow is required to run this. The .npy file for [VGG16] to be downloaded before using this needwork. You can find the file here: ftp://mi.eng.cam.ac.uk/pub/mttt2/models/vgg16.npy

No Pascal VOC finetuning was applied to the weights. The model is meant to be finetuned on your own data. The model can be applied to an image directly (see test_fcn32_vgg.py) but the result will be rather coarse.

Requirements

In addition to tensorflow the following packages are required:

numpy scipy pillow matplotlib

Those packages can be installed by running pip install -r requirements.txt or pip install numpy scipy pillow matplotlib.

Tensorflow 1.0rc

This code requires Tensorflow Version >= 1.0rc to run. If you want to use older Version you can try using commit bf9400c6303826e1c25bf09a3b032e51cef57e3b. This Commit has been tested using the pip version of 0.12, 0.11 and 0.10.

Tensorflow 1.0 comes with a large number of breaking api changes. If you are currently running an older tensorflow version, I would suggest creating a new virtualenv and install 1.0rc using:

export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.0.0rc0-cp27-none-linux_x86_64.whl
pip install --upgrade $TF_BINARY_URL

Above commands will install the linux version with gpu support. For other versions follow the instructions here.

Usage

python test_fcn32_vgg.py to test the implementation.

Use this to build the VGG object for finetuning:

vgg = vgg16.Vgg16()
vgg.build(images, train=True, num_classes=num_classes, random_init_fc8=True)

The images is a tensor with shape [None, h, w, 3]. Where h and w can have arbitrary size.

Trick: the tensor can be a placeholder, a variable or even a constant.

Be aware, that num_classes influences the way score_fr (the original fc8 layer) is initialized. For finetuning I recommend using the option random_init_fc8=True.

Training

Example code for training can be found in the KittiSeg project repository.

Finetuning and training

For training build the graph using vgg.build(images, train=True, num_classes=num_classes) were images is q queue yielding image batches. Use a softmax_cross_entropy loss function on top of the output of vgg.up. An Implementation of the loss function can be found in loss.py.

To train the graph you need an input producer and a training script. Have a look at TensorVision to see how to build those.

I had success finetuning the network using Adam Optimizer with a learning rate of 1e-6.

Content

Currently the following Models are provided:

  • FCN32
  • FCN16
  • FCN8

Remark

The deconv layer of tensorflow allows to provide a shape. The crop layer of the original implementation is therefore not needed.

I have slightly altered the naming of the upscore layer.

Field of View

The receptive field (also known as or field of view) of the provided model is:

( ( ( ( ( 7 ) * 2 + 6 ) * 2 + 6 ) * 2 + 6 ) * 2 + 4 ) * 2 + 4 = 404

Predecessors

Weights were generated using Caffe to Tensorflow. The VGG implementation is based on tensorflow-vgg16 and numpy loading is based on tensorflow-vgg. You do not need any of the above cited code to run the model, not do you need caffe.

Install

Installing matplotlib from pip requires the following packages to be installed libpng-dev, libjpeg8-dev, libfreetype6-dev and pkg-config. On Debian, Linux Mint and Ubuntu Systems type:

sudo apt-get install libpng-dev libjpeg8-dev libfreetype6-dev pkg-config
pip install -r requirements.txt

TODO

  • Provide finetuned FCN weights.
  • Provide general training code
Owner
Marvin Teichmann
Germany Phd student. Working on Deep Learning and Computer Vision projects.
Marvin Teichmann
A simple, fast, and efficient object detector without FPN

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides an implementation for

789 Jan 09, 2023
Code and experiments for "Deep Neural Networks for Rank Consistent Ordinal Regression based on Conditional Probabilities"

corn-ordinal-neuralnet This repository contains the orginal model code and experiment logs for the paper "Deep Neural Networks for Rank Consistent Ord

Raschka Research Group 14 Dec 27, 2022
Object detection GUI based on PaddleDetection

PP-Tracking GUI界面测试版 本项目是基于飞桨开源的实时跟踪系统PP-Tracking开发的可视化界面 在PaddlePaddle中加入pyqt进行GUI页面研发,可使得整个训练过程可视化,并通过GUI界面进行调参,模型预测,视频输出等,通过多种类型的识别,简化整体预测流程。 GUI界面

杨毓栋 68 Jan 02, 2023
[Link]mareteutral - pars tradg wth M []

pairs-trading-with-ML Jonathan Larkin, August 2017 One popular strategy classification is Pairs Trading. Though this category of strategies can exhibi

Jonathan Larkin 134 Jan 06, 2023
Multivariate Boosted TRee

Multivariate Boosted TRee What is MBTR MBTR is a python package for multivariate boosted tree regressors trained in parameter space. The package can h

SUPSI-DACD-ISAAC 61 Dec 19, 2022
Learning Intents behind Interactions with Knowledge Graph for Recommendation, WWW2021

Learning Intents behind Interactions with Knowledge Graph for Recommendation This is our PyTorch implementation for the paper: Xiang Wang, Tinglin Hua

158 Dec 15, 2022
Multi-Agent Reinforcement Learning (MARL) method to learn scalable control polices for multi-agent target tracking.

scalableMARL Scalable Reinforcement Learning Policies for Multi-Agent Control CD. Hsu, H. Jeong, GJ. Pappas, P. Chaudhari. "Scalable Reinforcement Lea

Christopher Hsu 17 Nov 17, 2022
This project is a loose implementation of paper "Algorithmic Financial Trading with Deep Convolutional Neural Networks: Time Series to Image Conversion Approach"

Stock Market Buy/Sell/Hold prediction Using convolutional Neural Network This repo is an attempt to implement the research paper titled "Algorithmic F

Asutosh Nayak 136 Dec 28, 2022
Detectron2 is FAIR's next-generation platform for object detection and segmentation.

Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up r

Facebook Research 23.3k Jan 08, 2023
The Balloon Learning Environment - flying stratospheric balloons with deep reinforcement learning.

Balloon Learning Environment Docs The Balloon Learning Environment (BLE) is a simulator for stratospheric balloons. It is designed as a benchmark envi

Google 87 Dec 25, 2022
Implementation of the Swin Transformer in PyTorch.

Swin Transformer - PyTorch Implementation of the Swin Transformer architecture. This paper presents a new vision Transformer, called Swin Transformer,

597 Jan 03, 2023
PyTorch implementation of the end-to-end coreference resolution model with different higher-order inference methods.

End-to-End Coreference Resolution with Different Higher-Order Inference Methods This repository contains the implementation of the paper: Revealing th

Liyan 52 Jan 04, 2023
PyTorch implementation of PNASNet-5 on ImageNet

PNASNet.pytorch PyTorch implementation of PNASNet-5. Specifically, PyTorch code from this repository is adapted to completely match both my implemetat

Chenxi Liu 314 Nov 25, 2022
BLEND: A Fast, Memory-Efficient, and Accurate Mechanism to Find Fuzzy Seed Matches

BLEND is a mechanism that can efficiently find fuzzy seed matches between sequences to significantly improve the performance and accuracy while reducing the memory space usage of two important applic

SAFARI Research Group at ETH Zurich and Carnegie Mellon University 19 Dec 26, 2022
Utilizes Pose Estimation to offer sprinters cues based on an image of their running form.

Running-Form-Correction Utilizes Pose Estimation to offer sprinters cues based on an image of their running form. How to Run Dependencies You will nee

3 Nov 08, 2022
Dilated Convolution for Semantic Image Segmentation

Multi-Scale Context Aggregation by Dilated Convolutions Introduction Properties of dilated convolution are discussed in our ICLR 2016 conference paper

Fisher Yu 764 Dec 26, 2022
Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation"

CoCosNet Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation" (CVPR 2020 oral). Update: 202

Lingbo Yang 38 Sep 22, 2021
Technical Analysis Indicators - Pandas TA is an easy to use Python 3 Pandas Extension with 130+ Indicators

Pandas TA - A Technical Analysis Library in Python 3 Pandas Technical Analysis (Pandas TA) is an easy to use library that leverages the Pandas package

Kevin Johnson 3.2k Jan 09, 2023
This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

Sergi Caelles 828 Jan 05, 2023
Official implementation of MSR-GCN (ICCV 2021 paper)

MSR-GCN Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper) [Paper] [Sup

LevonDang 42 Nov 07, 2022