Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Overview

Minimal PyTorch implementation of Generative Latent Optimization

This is a reimplementation of the paper

Piotr Bojanowski, Armand Joulin, David Lopez-Paz, Arthur Szlam:
Optimizing the Latent Space of Generative Networks

I'm not one of the authors. I just reimplemented parts of the paper in PyTorch for learning about PyTorch and generative models. Also, I liked the idea in the paper and was surprised that the approach actually works.

Implementation of the Laplacian pyramid L1 loss is inspired by https://github.com/mtyka/laploss. DCGAN network architecture follows https://github.com/pytorch/examples/tree/master/dcgan.

Running the code

First, install the required packages. For example, in Anaconda, you can simple do

conda install pytorch torchvision -c pytorch
conda install scikit-learn tqdm plac python-lmdb pillow

Download the LSUN dataset (only the bedroom training images are used here) into $LSUN_DIR. Then, simply run:

python glo.py $LSUN_DIR

You can learn more about the settings by running python glo.py --help.

Results

Unless mentioned otherwise, results are shown from a run over only a subset of the data (100000 samples - can be specified via the -n argument). Optimization was performed for only 25 epochs. The images below show reconstructions from the optimized latent space.

Results with 100-dimensional representation space look quite good, similar to the results shown in Fig. 1 in the paper.

python glo.py $LSUN_DIR -o d100 -gpu -d 100 -n 100000

Training for more epochs and from the whole dataset will make the images even sharper. Here are results (with 100D latent space) from a longer run of 50 epochs on the full dataset.

python glo.py $LSUN_DIR -o d100_full -gpu -d 100 -e 50

I'm not sure how many pyramid levels the authors used for the Laplacian pyramid L1 loss (here, we use 3 levels, but more might be better ... or not). But these results seem close enough.


Results with 512-dimensional representation space:

python glo.py $LSUN_DIR -o d512 -gpu -d 512 -n 100000

One of the main contributions of the paper is the use of the Laplacian pyramid L1 loss. Lets see how it compares to reconstructions using a simple L2 loss, again from 100-d representation space:

python glo.py $LSUN_DIR -o d100_l2 -gpu -d 512 -n 100000 -l l2


Comparison to L2 reconstruction loss, 512-d representation space:

python glo.py $LSUN_DIR -o d512_l2 -gpu -d 512 -n 100000 -l l2

I observed that initialization of the latent vectors with PCA is very crucial. Below are results from (normally distributed) random latent vectors. After 25 epochs, loss is only 0.31 (when initializing from PCA, loss after only 1 epoch is already 0.23). Reconstructions look really blurry.

python glo.py $LSUN_DIR -o d100_rand -gpu -d 100 -n 100000 -i random -e 500

It gets better after 500 epochs, but still very slow convergence and the results are not as clear as with PCA initialization.

Owner
Thomas Neumann
Thomas Neumann
Train Dense Passage Retriever (DPR) with a single GPU

Gradient Cached Dense Passage Retrieval Gradient Cached Dense Passage Retrieval (GC-DPR) - is an extension of the original DPR library. We introduce G

Luyu Gao 92 Jan 02, 2023
Toolchain to build Yoshi's Island from source code

Project-Y Toolchain to build Yoshi's Island (J) V1.0 from source code, by MrL314 Last updated: September 17, 2021 Setup To begin, download this toolch

MrL314 19 Apr 18, 2022
Adversarial Graph Augmentation to Improve Graph Contrastive Learning

ADGCL : Adversarial Graph Augmentation to Improve Graph Contrastive Learning Introduction This repo contains the Pytorch [1] implementation of Adversa

susheel suresh 62 Nov 19, 2022
A PyTorch implementation: "LASAFT-Net-v2: Listen, Attend and Separate by Attentively aggregating Frequency Transformation"

LASAFT-Net-v2 Listen, Attend and Separate by Attentively aggregating Frequency Transformation Woosung Choi, Yeong-Seok Jeong, Jinsung Kim, Jaehwa Chun

Woosung Choi 29 Jun 04, 2022
[ICCV21] Official implementation of the "Social NCE: Contrastive Learning of Socially-aware Motion Representations" in PyTorch.

Social-NCE + CrowdNav Website | Paper | Video | Social NCE + Trajectron | Social NCE + STGCNN This is an official implementation for Social NCE: Contr

VITA lab at EPFL 125 Dec 23, 2022
Pyeventbus: a publish/subscribe event bus

pyeventbus pyeventbus is a publish/subscribe event bus for Python 2.7. simplifies the communication between python classes decouples event senders and

15 Apr 21, 2022
Simple-Neural-Network From Scratch in Python

Simple-Neural-Network From Scratch in Python This is a simple Neural Network created without any Machine Learning Libraries. The only dependencies are

Aum Shah 1 Dec 28, 2021
Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation.

DuoRec Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation. Usage Download datasets fr

Qrh 46 Dec 19, 2022
Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021.

SphereRPN Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021. Authors: Th

Thang Vu 15 Dec 02, 2022
DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021)

DeepLM DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021) Run Please install th

Jingwei Huang 130 Dec 02, 2022
Deep Sketch-guided Cartoon Video Inbetweening

Cartoon Video Inbetweening Paper | DOI | Video The source code of Deep Sketch-guided Cartoon Video Inbetweening by Xiaoyu Li, Bo Zhang, Jing Liao, Ped

Xiaoyu Li 37 Dec 22, 2022
Source code for our EMNLP'21 paper 《Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning》

Child-Tuning Source code for EMNLP 2021 Long paper: Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning. 1. Environ

46 Dec 12, 2022
This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

BUPT GAMMA Lab 519 Jan 02, 2023
Implementation of ETSformer, state of the art time-series Transformer, in Pytorch

ETSformer - Pytorch Implementation of ETSformer, state of the art time-series Transformer, in Pytorch Install $ pip install etsformer-pytorch Usage im

Phil Wang 121 Dec 30, 2022
Official Tensorflow implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation (ICLR 2020)

U-GAT-IT — Official TensorFlow Implementation (ICLR 2020) : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization fo

Junho Kim 6.2k Jan 04, 2023
Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Vision-Language Transformer and Query Generation for Referring Segmentation Please consider citing our paper in your publications if the project helps

Henghui Ding 143 Dec 23, 2022
Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in 3D.

ApproxMVBB Status Build UnitTests Homepage Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in

Gabriel Nützi 390 Dec 31, 2022
Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters.

Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters. Overview This project is a Torch implementation for our CVPR 2016 paper

Jianwei Yang 278 Dec 25, 2022
Code for Greedy Gradient Ensemble for Visual Question Answering (ICCV 2021, Oral)

Greedy Gradient Ensemble for De-biased VQA Code release for "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). GGE can

21 Jun 29, 2022
🚩🚩🚩

My CTF Challenges 2021 AIS3 Pre-exam / MyFirstCTF Name Category Keywords Difficulty ⒸⓄⓋⒾⒹ-①⑨ (MyFirstCTF Only) Reverse Baby ★ Piano Reverse C#, .NET ★

6 Oct 28, 2021