Chinese Mandarin tts text-to-speech 中文 (普通话) 语音 合成 , by fastspeech 2 , implemented in pytorch, using waveglow as vocoder,

Overview

Chinese mandarin text to speech based on Fastspeech2 and Unet

This is a modification and adpation of fastspeech2 to mandrin(普通话). Many modifications to the origin paper, including:

  1. Use UNet instead of postnet (1d conv). Unet is good at recovering spect details and much easier to train than original postnet
  2. Added hanzi(汉字,chinese character) embedding. It's harder for human being to read pinyin, but easier to read chinese character. Also this makes it more end-to-end.
  3. Removed pitch and energy embedding, and also the corresponding prediction network. This makes its much easier to train, especially for my gtx1060 card. I will try bringing them back if I have time (and hardware resources)
  4. Use only waveglow in synth, as it's much better than melgan and griffin-lim.
  5. subtracted the mel-mean for (seems much) easier prediction.
  6. Changed the loss weight to mel_postnet_loss x 1.0 + d_loss x 0.01 + mel_loss x 0.1
  7. Used linear duration scale instead of log, and subtracted the duration_mean in training.

Dependencies

All experiments were done under ubuntu16.04 + python3.7 + torch 1.7.1. Other env probably works too.

  • torch for training and inference
  • librosa and ffmpeg for basic audio processing
  • pypinyin用于转换汉字为拼音
  • jieba 用于分词
  • perf_logger用于写训练日志

First clone the project

git clone https://github.com/ranchlai/mandarin-tts.git

If too slow, try

git clone https://hub.fastgit.org/ranchlai/mandarin-tts.git

To install all dependencies, run


sudo apt-get install ffmpeg
pip3 install -r requirements.txt

Synthesize

python synthesize.py --input="您的电话余额不足,请及时充值"

or put all text in input.txt, then

python synthesize.py --input="./input.txt"

Checkpoints and waveglow should be downloaded at 1st run. You will see some files in ./checkpoint, and ./waveglow

In case it fails, download the checkpoint manully here

Audio samples

Audio samples can be found in this page

page

Model architecture

arch

Training

(under testing)

Currently I am use baker dataset(标贝), which can be downloaded from baker。 The dataset is for non-commercial purpose only, and so is the pretrained model.

I have processed the data for this experiment. You can also try

python3 preprocess_pinyin.py 
python3 preprocess_hanzi.py 

to generate required aligments, mels, vocab for pinyin and hanzi for training. Everythin should be ready under the directory './data/'(you can change the directory in hparams.py) before training.

python3 train.py

you can monitor the log in '/home/<user>/.perf_logger/'

Best practice: copy the ./data folder to /dev/shm to avoid harddisk reading (if you have big enough memorry)

The following are some spectrograms synthesized at step 300000

spect spect spect

TODO

  • Clean the training code
  • Add gan for better spectrogram prediction
  • Add Aishell3 support

References

Owner
vision, audio and NLP
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

HEP Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior Implementation Python3 PyTorch=1.0 NVIDIA GPU+CUDA Training process The

FengZhang 34 Dec 04, 2022
Selfplay In MultiPlayer Environments

This project allows you to train AI agents on custom-built multiplayer environments, through self-play reinforcement learning.

200 Jan 08, 2023
Unofficial Implementation of MLP-Mixer, Image Classification Model

MLP-Mixer Unoffical Implementation of MLP-Mixer, easy to use with terminal. Train and test easly. https://arxiv.org/abs/2105.01601 MLP-Mixer is an arc

Oğuzhan Ercan 6 Dec 05, 2022
Probabilistic Cross-Modal Embedding (PCME) CVPR 2021

Probabilistic Cross-Modal Embedding (PCME) CVPR 2021 Official Pytorch implementation of PCME | Paper Sanghyuk Chun1 Seong Joon Oh1 Rafael Sampaio de R

NAVER AI 87 Dec 21, 2022
Paaster is a secure by default end-to-end encrypted pastebin built with the objective of simplicity.

Follow the development of our desktop client here Paaster Paaster is a secure by default end-to-end encrypted pastebin built with the objective of sim

Ward 211 Dec 25, 2022
Asynchronous Advantage Actor-Critic in PyTorch

Asynchronous Advantage Actor-Critic in PyTorch This is PyTorch implementation of A3C as described in Asynchronous Methods for Deep Reinforcement Learn

Reiji Hatsugai 38 Dec 12, 2022
A Factor Model for Persistence in Investment Manager Performance

Factor-Model-Manager-Performance A Factor Model for Persistence in Investment Manager Performance I apply methods and processes similar to those used

Omid Arhami 1 Dec 01, 2021
Efficient Online Bayesian Inference for Neural Bandits

Efficient Online Bayesian Inference for Neural Bandits By Gerardo Durán-Martín, Aleyna Kara, and Kevin Murphy AISTATS 2022.

Probabilistic machine learning 49 Dec 27, 2022
Toolkit for collecting and applying prompts

PromptSource Promptsource is a toolkit for collecting and applying prompts to NLP datasets. Promptsource uses a simple templating language to programa

BigScience Workshop 998 Jan 03, 2023
cl;asification problem using classification models in supervised learning

wine-quality-predition---classification cl;asification problem using classification models in supervised learning Wine Quality Prediction Analysis - C

Vineeth Reddy Gangula 1 Jan 18, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
HiFT: Hierarchical Feature Transformer for Aerial Tracking (ICCV2021)

HiFT: Hierarchical Feature Transformer for Aerial Tracking Ziang Cao, Changhong Fu, Junjie Ye, Bowen Li, and Yiming Li Our paper is Accepted by ICCV 2

Intelligent Vision for Robotics in Complex Environment 55 Nov 23, 2022
Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style disentanglement in image generation and translation" (ICCV 2021)

DiagonalGAN Official Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style Disentanglement in Image Generation and Trans

32 Dec 06, 2022
Text to image synthesis using thought vectors

Text To Image Synthesis Using Thought Vectors This is an experimental tensorflow implementation of synthesizing images from captions using Skip Though

Paarth Neekhara 2.1k Jan 05, 2023
Dataset and codebase for NeurIPS 2021 paper: Exploring Forensic Dental Identification with Deep Learning

Repository under construction. Example dataset, checkpoints, and training/testing scripts will be avaible soon! 💡 Collated best practices from most p

4 Jun 26, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
OverFeat is a Convolutional Network-based image classifier and feature extractor.

OverFeat OverFeat is a Convolutional Network-based image classifier and feature extractor. OverFeat was trained on the ImageNet dataset and participat

593 Dec 08, 2022
Replication Package for AequeVox:Automated Fariness Testing for Speech Recognition Systems

AequeVox Replication Package for AequeVox:Automated Fariness Testing for Speech Recognition Systems README under development. Python Packages Required

Sai Sathiesh 2 Aug 28, 2022
Long Expressive Memory (LEM)

Long Expressive Memory for Sequence Modeling This repository contains the implementation to reproduce the numerical experiments of the paper Long Expr

Konstantin Rusch 47 Dec 17, 2022
TargetAllDomainObjects - A python wrapper to run a command on against all users/computers/DCs of a Windows Domain

TargetAllDomainObjects A python wrapper to run a command on against all users/co

Podalirius 19 Dec 13, 2022