Cooperative Driving Dataset: a dataset for multi-agent driving scenarios

Overview

Cooperative Driving Dataset (CODD)

DOI CC BY-SA 4.0

The Cooperative Driving dataset is a synthetic dataset generated using CARLA that contains lidar data from multiple vehicles navigating simultaneously through a diverse set of driving scenarios. This dataset was created to enable further research in multi-agent perception (cooperative perception) including cooperative 3D object detection, cooperative object tracking, multi-agent SLAM and point cloud registration. Towards that goal, all the frames have been labelled with ground-truth sensor pose and 3D object bounding boxes.

This repository details the organisation of the dataset, including its data sctructure, and how to visualise the data. Additionally, it contains the code used to create the dataset, allowing users to customly create their own dataset.

static frame video showing frames

Data structure

The dataset is composed of snippets, each containing a sequence of temporal frames in one driving environment. Each frame in a snippet corresponds to a temporal slice of data, containing sensor data (lidar) from all vehicles in that environment, as well as the absolute pose of the sensor and ground-truth annotations for the 3D bounding boxes of vehicles and pedestrians. Each snippet is saved as an HDF5 file containing the following arrays (HDF5 datasets):

  • pointcloud with dimensions [frames, vehicles, points_per_cloud, 4] where the last dimensions represent the X,Y,Z and intensity coordinates of the lidar points in the local sensor coordinate system.
  • lidar_pose with dimensions [frames, vehicles, 6] where the last coordinates represent the X,Y,Z,pitch,yaw,roll of the global sensor pose. These can be used to compute the transformation that maps from the local sensor coordinate system to the global coordinate system.
  • vehicle_boundingbox with dimensions [frames, vehicles, 8] where the last coordinates represent the 3D Bounding Box encoded by X,Y,Z,yaw,pitch,Width,Length,Height. Note that the X,Y,Z correspond to the centre of the 3DBB in the global coordinate system. The roll angle is ignored (roll=0).
  • pedestrian_boundingbox with dimensions [frames, pedestrians , 8] where the last coordinates represent the 3DBB encoded as before.

Where

  • frames indicate the number of frames in the snippet.
  • vehicles is the number of vehicles in the environment. Note that all vehicles have lidars that we use to collect data.
  • point_per_cloud is the maximum number of points per pointcloud. Sometimes a given pointcloud will have less points that this maximum, in that case we pad the entries with zeros to be able to concatenate them into a uniformly sized array.
  • pedestrians is the number of pedestrians in the environment.

Notes:

  1. The point clouds are in the local coordinate system of each sensor, where the transformation from local to global coordinate system is computed using lidar_pose.
  2. Angles are always in degrees.
  3. Pose is represented using the UnrealEngine4 left-hand coordinate system. An example to reconstruct a transformation matrix from local -> global is available in vis.py, where such matrix is used to aggregate all local lidar point clouds into a global reference system.
  4. The vehicle index is shared across pointcloud, lidar_pose and vehicle_boundingbox, i.e. the point cloud at index [frame,i] correspond to the vehicle with bounding box at [frame,i].
  5. The vehicle and pedestrian indices are consistent across frames, allowing to determine the track of a given vehicle/pedestrian.
  6. All point clouds of a given frame are synchronised in time - they were captured at exactly the same time instant.

Downloading the Dataset

Although this repository provides the tools to generate your own dataset (see Generating your own data), we have generated an official release of the dataset.

This dataset contains 108 snippets across all available CARLA maps. The snippets file names encode the properties of the snippets as m[mapNumber]v[numVehicles]p[numPedestrians]s[seed].hdf5.

Download here.

This official dataset was generated with the following settings:

  • 5 fps
  • 125 frames (corresponding to 25s of simulation time per snippet)
  • 50k points per cloud
  • 100m lidar range
  • 30 burnt frames (discarded frames in the beggining of simulation)
  • nvehicles sampled from a binomial distribution with mean 10 and var 5
  • npedestrians sampled from a binomial distribution with mean 5 and var 2

Visualising the snippets

To visualise the data, please install the following dependencies:

  • Python 3.x
  • h5py
  • numpy
  • Mayavi >= 4.7.2

Then run:

python vis.py [path_to_snippet]

Note that you may want to pause the animation and adjust the view. The visualisation iteratively goes through all the frames, presenting the fusion of the point cloud from all vehicles transformed to the global coordinate system. It also shows the ground-truth bounding boxes for vehicles (in green) and pedestrians (in cyan).

video showing frames

Generating your own data

Requirements

Before getting started, please install the following dependencies:

  • CARLA >= 0.9.10
  • Python 3.x
  • h5py
  • numpy

Note: If the CARLA python package is not available in the python path you need to manually provide the path to the .egg file in fixpath.py.

Creating snippets

To generate the data one must firstly start the CARLA simlator:

cd CARLA_PATH
./CARLAUE4.sh

Then one can create a snippet using

python genSnippet.py --map Town03 --fps 5 --frames 50 --burn 30 --nvehicles 10 --npedestrians 3 --range 100 -s test.hdf5

This creates a snippet test.hdf5 in Town03 with a rate of 5 frames per second, saving 50 frames (corresponds to 10s of simulation time) in a scenario with 10 vehicles (we collect lidar data from all of them) and 3 pedestrians.

The burn argument is used to discard the first 30 frames since the vehicles will be stopped or slowly moving (due to inertia), so we would get many highly correlated frames without new information.

Note that this script randomly select a location in the map and tries to spawn all the vehicles within range meters of this location, which increases the likelihood the vehicles will share their field-of-view (see one another).

The range also specifies the maximum range of the lidar sensors.

The seed argument defines the RNG seed which allows to reproduce the same scenario (spawn points, trajectories, etc) and change any sensor characteristics across runs.

For more options, such as the number of points per cloud or the number of lidar lasers, or the lower lidar angle, see python genSnippet.py -h.

Creating a collection of snippets

Alternatively, to generate a collection of snippets one can use

python genDataset.py N

where N specifies the number of snippets to generate. This script randomly selects a map and sample from specific distributions for number of vehicles and pedestrians. Other options may be individually set-up within the script.

Note: Town06,Town07 and Town10HD need to be installed separately in CARLA, see here.

Citation

If you use our dataset or generate your own dataset using parts of our code, please cite

@article{arnold_fast_reg,
	title={{Fast and Robust Registration of Partially Overlapping Point Clouds}},
	author={Arnold, Eduardo and Mozaffari, Sajjad and Dianati, Mehrdad},
	year={2021}
}

License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

CC BY-SA 4.0

Owner
Eduardo Henrique Arnold
PhD candidate at WMG, University of Warwick. Working on perception methods for autonomous vehicles. 🚗
Eduardo Henrique Arnold
MINOS: Multimodal Indoor Simulator

MINOS Simulator MINOS is a simulator designed to support the development of multisensory models for goal-directed navigation in complex indoor environ

194 Dec 27, 2022
The author's officially unofficial PyTorch BigGAN implementation.

BigGAN-PyTorch The author's officially unofficial PyTorch BigGAN implementation. This repo contains code for 4-8 GPU training of BigGANs from Large Sc

Andy Brock 2.6k Jan 02, 2023
Code for generating the figures in the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?"

Code for running simulations for the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Lin

Matthew Farrell 1 Nov 22, 2022
Any-to-any voice conversion using synthetic specific-speaker speeches as intermedium features

MediumVC MediumVC is an utterance-level method towards any-to-any VC. Before that, we propose SingleVC to perform A2O tasks(Xi → Ŷi) , Xi means utter

谷下雨 47 Dec 25, 2022
Code for "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" @ICRA2021

CloudAAE This is an tensorflow implementation of "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" Files log:

Gee 35 Nov 14, 2022
A TensorFlow Implementation of "Deep Multi-Scale Video Prediction Beyond Mean Square Error" by Mathieu, Couprie & LeCun.

Adversarial Video Generation This project implements a generative adversarial network to predict future frames of video, as detailed in "Deep Multi-Sc

Matt Cooper 704 Nov 26, 2022
This repository contains PyTorch code for Robust Vision Transformers.

This repository contains PyTorch code for Robust Vision Transformers.

117 Dec 07, 2022
An end-to-end implementation of intent prediction with Metaflow and other cool tools

You Don't Need a Bigger Boat An end-to-end (Metaflow-based) implementation of an intent prediction flow for kids who can't MLOps good and wanna learn

Jacopo Tagliabue 614 Dec 31, 2022
《Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching》(CVPR 2020)

This contains the codes for cross-view geo-localization method described in: Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching, CVPR2020.

41 Oct 27, 2022
City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces

City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces Paper Temporary GitHub page for City Surfaces paper. More soon! While designing s

14 Nov 10, 2022
CLADE - Efficient Semantic Image Synthesis via Class-Adaptive Normalization (TPAMI 2021)

Efficient Semantic Image Synthesis via Class-Adaptive Normalization (Accepted by TPAMI)

tzt 49 Nov 17, 2022
Select, weight and analyze complex sample data

Sample Analytics In large-scale surveys, often complex random mechanisms are used to select samples. Estimates derived from such samples must reflect

samplics 37 Dec 15, 2022
The codes of paper 'Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees'

Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees This project contains the codes of pap

0 Apr 20, 2022
A Topic Modeling toolbox

Topik A Topic Modeling toolbox. Introduction The aim of topik is to provide a full suite and high-level interface for anyone interested in applying to

Anaconda, Inc. (formerly Continuum Analytics, Inc.) 93 Dec 01, 2022
A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.

Spatio-Temporal Dynamic Inference Network for Group Activity Recognition The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Networ

40 Dec 12, 2022
Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Aviv Gabbay 41 Nov 29, 2022
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

ChongjianGE 94 Dec 11, 2022
End-To-End Optimization of LiDAR Beam Configuration

End-To-End Optimization of LiDAR Beam Configuration arXiv | IEEE Xplore This repository is the official implementation of the paper: End-To-End Optimi

Niclas 30 Nov 28, 2022
PyTorch Code for "Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning"

Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning [Project Page] [Paper] Wenlong Huang1, Igor Mordatch2, Pieter Abbeel1,

Wenlong Huang 40 Nov 22, 2022
Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (CVAMD)

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022