《Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching》(CVPR 2020)

Overview

Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching

This contains the codes for cross-view geo-localization method described in: Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching, CVPR2020. alt text

Abstract

Cross-view geo-localization is the problem of estimating the position and orientation (latitude, longitude and azimuth angle) of a camera at ground level given a large-scale database of geo-tagged aerial (\eg, satellite) images. Existing approaches treat the task as a pure location estimation problem by learning discriminative feature descriptors, but neglect orientation alignment. It is well-recognized that knowing the orientation between ground and aerial images can significantly reduce matching ambiguity between these two views, especially when the ground-level images have a limited Field of View (FoV) instead of a full field-of-view panorama. Therefore, we design a Dynamic Similarity Matching network to estimate cross-view orientation alignment during localization. In particular, we address the cross-view domain gap by applying a polar transform to the aerial images to approximately align the images up to an unknown azimuth angle. Then, a two-stream convolutional network is used to learn deep features from the ground and polar-transformed aerial images. Finally, we obtain the orientation by computing the correlation between cross-view features, which also provides a more accurate measure of feature similarity, improving location recall. Experiments on standard datasets demonstrate that our method significantly improves state-of-the-art performance. Remarkably, we improve the top-1 location recall rate on the CVUSA dataset by a factor of $1.5\times$ for panoramas with known orientation, by a factor of $3.3\times$ for panoramas with unknown orientation, and by a factor of $6\times$ for $180^{\circ}$-FoV images with unknown orientation.

Experiment Dataset

We use two existing dataset to do the experiments

  • CVUSA dataset: a dataset in America, with pairs of ground-level images and satellite images. All ground-level images are panoramic images.
    The dataset can be accessed from https://github.com/viibridges/crossnet

  • CVACT dataset: a dataset in Australia, with pairs of ground-level images and satellite images. All ground-level images are panoramic images.
    The dataset can be accessed from https://github.com/Liumouliu/OriCNN

Dataset Preparation: Polar transform

  1. Please Download the two datasets from above links, and then put them under the director "Data/". The structure of the director "Data/" should be: "Data/CVUSA/ Data/ANU_data_small/"
  2. Please run "data_preparation.py" to get polar transformed aerial images of the two datasets and pre-crop-and-resize the street-view images in CVACT dataset to accelerate the training speed.

Codes

Codes for training and testing on unknown orientation (train_grd_noise=360) and different FoV.

  1. Training: CVUSA: python train_cvusa_fov.py --polar 1 --train_grd_noise 360 --train_grd_FOV $YOUR_FOV --test_grd_FOV $YOUR_FOV CVACT: python train_cvact_fov.py --polar 1 --train_grd_noise 360 --train_grd_FOV $YOUR_FOV --test_grd_FOV $YOUR_FOV

  2. Evaluation: CVUSA: python test_cvusa_fov.py --polar 1 --train_grd_noise 360 --train_grd_FOV $YOUR_FOV --test_grd_FOV $YOUR_FOV CVACT: python test_cvact_fov.py --polar 1 --train_grd_noise 360 --train_grd_FOV $YOUR_FOV --test_grd_FOV $YOUR_FOV

Note that the test set construction operations are inside the data preparation script, polar_input_data_orien_FOV_3.py for CVUSA and ./OriNet_CVACT/input_data_act_polar_3.py for CVACT. We use "np.random.rand(2019)" in test_cvusa_fov.py and test_cvact_fov.py to make sure the constructed test set is the same one whenever they are used for performance evaluation for different models.

In case readers are interested to see the query images of newly constructed test sets where the ground images are with unkown orientation and small FoV, we provide the following two python scripts to save the images and their ground truth orientations at the local disk:

  • CVUSA datset: python generate_test_data_cvusa.py

  • CVACT dataset: python generate_test_data_cvact.py

Readers are encouraged to visit "https://github.com/Liumouliu/OriCNN" to access codes for evaluation on the fine-grained geo-localization CVACT_test set.

Models:

Our trained models for CVUSA and CVACT are available in here.

There is also an "Initialize" model for your own training step. The VGG16 part in the "Initialize" model is initialised by the online model and other parts are initialised randomly.

Please put them under the director of "Model/" and then you can use them for training or evaluation.

Publications

This work is published in CVPR 2020.
[Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching]

If you are interested in our work and use our code, we are pleased that you can cite the following publication:
Yujiao Shi, Xin Yu, Dylan Campbell, Hongdong Li. Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching.

@inproceedings{shi2020where, title={Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching}, author={Shi, Yujiao and Yu, Xin and Campbell, Dylan and Li, Hongdong}, booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, year={2020} }

This is implementation of AlexNet(2012) with 3D Convolution on TensorFlow (AlexNet 3D).

AlexNet_3dConv TensorFlow implementation of AlexNet(2012) by Alex Krizhevsky, with 3D convolutiional layers. 3D AlexNet Network with a standart AlexNe

Denis Timonin 41 Jan 16, 2022
Patch-Diffusion Code (AAAI2022)

Patch-Diffusion This is an official PyTorch implementation of "Patch Diffusion: A General Module for Face Manipulation Detection" in AAAI2022. Require

H 7 Nov 02, 2022
Official implementation of the paper "Steganographer Detection via a Similarity Accumulation Graph Convolutional Network"

SAGCN - Official PyTorch Implementation | Paper | Project Page This is the official implementation of the paper "Steganographer detection via a simila

ZHANG Zhi 1 Nov 26, 2021
Multi-robot collaborative exploration and mapping through Voronoi partition and DRL in unknown environment

Voronoi Multi_Robot Collaborate Exploration Introduction In the unknown environment, the cooperative exploration of multiple robots is completed by Vo

PeaceWord 6 Nov 22, 2022
Language Used: Python . Made in Jupyter(Anaconda) notebook.

FACE-DETECTION-ATTENDENCE-SYSTEM Made in Jupyter(Anaconda) notebook. Language Used: Python Steps to perform before running the program : Install Anaco

1 Jan 12, 2022
Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021

ACTOR Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021. Please visit our we

Mathis Petrovich 248 Dec 23, 2022
NER for Indian languages

CL-NERIL: A Cross-Lingual Model for NER in Indian Languages Code for the paper - https://arxiv.org/abs/2111.11815 Setup Setup a virtual environment Th

Akshara P 0 Nov 24, 2021
Software for Multimodalty 2D+3D Facial Expression Recognition (FER) UI

EmotionUI Software for Multimodalty 2D+3D Facial Expression Recognition (FER) UI. demo screenshot (with RealSense) required packages Python = 3.6 num

Yang Jiao 2 Dec 23, 2021
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 05, 2022
LaneDetectionAndLaneKeeping - Lane Detection And Lane Keeping

LaneDetectionAndLaneKeeping This project is part of my bachelor's thesis. The go

5 Jun 27, 2022
I tried to apply the CAM algorithm to YOLOv4 and it worked.

YOLOV4:You Only Look Once目标检测模型在pytorch当中的实现 2021年2月7日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map得到大幅度提升。 目录 性能情况 Performance 实现的内容 Achievement

55 Dec 05, 2022
Denoising images with Fourier Ring Correlation loss

Denoising images with Fourier Ring Correlation loss The python code accompanies the working manuscript Image quality measurements and denoising using

2 Mar 12, 2022
This dlib-based facial login system

Facial-Login-System This dlib-based facial login system is a technology capable of matching a human face from a digital webcam frame capture against a

Mushahid Ali 3 Apr 23, 2022
PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With

Amin Rezaei 157 Dec 11, 2022
A spherical CNN for weather forecasting

DeepSphere-Weather - Deep Learning on the sphere for weather/climate applications. The code in this repository provides a scalable and flexible framew

DeepSphere 47 Dec 25, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
Official code for the publication "HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder".

HyFactor Graph-based architectures are becoming increasingly popular as a tool for structure generation. Here, we introduce a novel open-source archit

Laboratoire-de-Chemoinformatique 11 Oct 10, 2022
CNN designed for pansharpening

PROGRESSIVE BAND-SEPARATED CONVOLUTIONAL NEURAL NETWORK FOR MULTISPECTRAL PANSHARPENING This repository contains main code for the paper PROGRESSIVE B

SerendipitysX 3 Dec 29, 2021
An educational tool to introduce AI planning concepts using mobile manipulator robots.

JEDAI Explains Decision-Making AI Virtual Machine Image The recommended way of using JEDAI is to use pre-configured Virtual Machine image that is avai

Autonomous Agents and Intelligent Robots 13 Nov 15, 2022
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 05, 2023