Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

Related tags

Deep LearningMSAD
Overview

MSAD

Multi-Scale Aligned Distillation for Low-Resolution Detection

Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya Jia


This project provides an implementation for the CVPR 2021 paper "Multi-Scale Aligned Distillation for Low-Resolution Detection" based on Detectron2. MSAD targets to detect objects using low-resolution instead of high-resolution image. MSAD could obtain comparable performance in high-resolution image size. Our paper use Slimmable Neural Networks as our pretrained weight.

Installation

This project is based on Detectron2, which can be constructed as follows.

  • Install Detectron2 following the instructions. We are noting that our code is checked in detectron2 V0.2.1 (commit version: be792b959bca9af0aacfa04799537856c7a92802) and pytorch 1.4.
  • Setup the dataset following the structure.
  • Copy this project to /path/to/detectron2/projects/MSAD
  • Download the slimmable networks in the github. The slimmable resnet50 pretrained weight link is here.
  • Set the "find_unused_parameters=True" in distributed training of your own detectron2. You could modify it in detectron2/engine/defaults.py.

Pretrained Weight

  • Move the pretrained weight to your target path
  • Modify the weight path in configs/Base-SLRESNET-FCOS.yaml

Teacher Training

To train teacher model with 8 GPUs, run:

cd /path/to/detectron2
python3 projects/MSAD/train_net_T.py --config-file <projects/MSAD/configs/config.yaml> --num-gpus 8

For example, to launch MSAD teacher training (1x schedule) with Slimmable-ResNet-50 backbone in 0.25 width on 8 GPUs and save the model in the path "/data/SLR025-50-T". one should execute:

cd /path/to/detectron2
python3 projects/MSAD/train_net_T.py --config-file projects/MSAD/configs/SLR025-50-T.yaml --num-gpus 8 OUTPUT_DIR /data/SLR025-50-T 

Student Training

To train student model with 8 GPUs, run:

cd /path/to/detectron2
python3 projects/MSAD/train_net_S.py --config-file <projects/MSAD/configs/config.yaml> --num-gpus 8

For example, to launch MSAD student training (1x schedule) with Slimmable-ResNet-50 backbone in 0.25 width on 8 GPUs and save the model in the path "/data/SLR025-50-S". We assume the teacher weight is saved in the path "/data/SLR025-50-T/model_final.pth" one should execute:

cd /path/to/detectron2
python3 projects/MSAD/train_net_S.py --config-file projects/MSAD/configs/MSAD-R50-S025-1x.yaml --num-gpus 8 MODEL.WEIGHTS /data/SLR025-50-T/model_final.pth OUTPUT_DIR MSAD-R50-S025-1x

Evaluation

To evaluate a teacher or student pre-trained model with 8 GPUs, run:

cd /path/to/detectron2
python3 projects/MSAD/train_net_T.py --config-file <config.yaml> --num-gpus 8 --eval-only MODEL.WEIGHTS model_checkpoint

or

cd /path/to/detectron2
python3 projects/MSAD/train_net_S.py --config-file <config.yaml> --num-gpus 8 --eval-only MODEL.WEIGHTS model_checkpoint

Results

We provide the results on COCO val set with pretrained models. In the following table, we define the backbone FLOPs as capacity. For brevity, we regard the FLOPs of Slimmable Resnet50 in width 1.0 and high resolution input (800,1333) as 1x. The metrics are reported in old-version detectron2. The new-version detectron will report higher loss value but it does not affect the final result.

Method Backbone Capacity Sched Width Role Resolution BoxAP download
FCOS Slimmable-R50 1.25x 1x 1.00 Teacher H & L 42.8 model | metrics
FCOS Slimmable-R50 0.25x 1x 1.00 Student L 39.9 model | metrics
FCOS Slimmable-R50 0.70x 1x 0.75 Teacher H & L 41.2 model | metrics
FCOS Slimmable-R50 0.14x 1x 0.75 Student L 38.8 model | metrics
FCOS Slimmable-R50 0.31x 1x 0.50 Teacher H & L 38.4 model | metrics
FCOS Slimmable-R50 0.06x 1x 0.50 Student L 35.7 model | metrics
FCOS Slimmable-R50 0.08x 1x 0.25 Teacher H & L 33.2 model | metrics
FCOS Slimmable-R50 0.02x 1x 0.25 Student L 30.3 model | metrics

Citing MSAD

Consider cite MSAD in your publications if it helps your research.

@article{qi2021msad,
  title={Multi-Scale Aligned Distillation for Low-Resolution Detection},
  author={Lu Qi, Jason Kuen, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya Jia},
  journal={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2021}
}
Owner
DV Lab
Deep Vision Lab
DV Lab
DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021]

DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021] Yiming Li, Shunli Ren, Pengxiang Wu, Siheng Chen, Chen Feng

Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU 98 Dec 21, 2022
Realistic lighting in ursina!

Ursina Lighting Realistic lighting in ursina! If you want to have realistic lighting in ursina, import the UrsinaLighting.py in your project and use t

17 Jul 07, 2022
House3D: A Rich and Realistic 3D Environment

House3D: A Rich and Realistic 3D Environment Yi Wu, Yuxin Wu, Georgia Gkioxari and Yuandong Tian House3D is a virtual 3D environment which consists of

Meta Research 1.1k Dec 14, 2022
DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation

DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation This project hosts the code for implementing the DCT-MASK algorithms

Alibaba Cloud 57 Nov 27, 2022
CountDown to New Year and shoot fireworks

CountDown and Shoot Fireworks About App This is an small application make you re

5 Dec 31, 2022
Official implementation of deep-multi-trajectory-based single object tracking (IEEE T-CSVT 2021).

DeepMTA_PyTorch Officical PyTorch Implementation of "Dynamic Attention-guided Multi-TrajectoryAnalysis for Single Object Tracking", Xiao Wang, Zhe Che

Xiao Wang๏ผˆ็Ž‹้€๏ผ‰ 7 Dec 03, 2022
[CVPR2021] Domain Consensus Clustering for Universal Domain Adaptation

[CVPR2021] Domain Consensus Clustering for Universal Domain Adaptation [Paper] Prerequisites To install requirements: pip install -r requirements.txt

Guangrui Li 84 Dec 26, 2022
Intro-to-dl - Resources for "Introduction to Deep Learning" course.

Introduction to Deep Learning course resources https://www.coursera.org/learn/intro-to-deep-learning Running on Google Colab (tested for all weeks) Go

Advanced Machine Learning specialisation by HSE 761 Dec 24, 2022
BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net

BraTS(Brain Tumour Segmentation) using V-Net This project is an approach to dete

Rituraj Dutta 7 Nov 27, 2022
BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands.

BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands. Keeping statistics of whom are most visible and recognisable in the series and wether or not it has an im

Frederik 2 Jan 04, 2022
Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Datasets"

Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Data

2 Oct 06, 2022
A python program to hack instagram

hackinsta a program to hack instagram Yokoback_(instahack) is the file to open, you need libraries write on import. You run that file in the same fold

2 Jan 22, 2022
MultiTaskLearning - Multi Task Learning for 3D segmentation

Multi Task Learning for 3D segmentation Perception stack of an Autonomous Drivin

2 Sep 22, 2022
Python library containing BART query generation and BERT-based Siamese models for neural retrieval.

Neural Retrieval Embedding-based Zero-shot Retrieval through Query Generation leverages query synthesis over large corpuses of unlabeled text (such as

Amazon Web Services - Labs 35 Apr 14, 2022
AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis.

AITom Introduction AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis. AITom is originated from the tomominer l

93 Jan 02, 2023
SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking

SPLADE ๐Ÿด + ๐Ÿฅ„ = ๐Ÿ”Ž This repository contains the weights for four models as well as the code for running inference for our two papers: [v1]: SPLADE: S

NAVER 170 Dec 28, 2022
Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems"

Code Artifacts Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driv

Andrea Stocco 2 Aug 24, 2022
VideoGPT: Video Generation using VQ-VAE and Transformers

VideoGPT: Video Generation using VQ-VAE and Transformers [Paper][Website][Colab][Gradio Demo] We present VideoGPT: a conceptually simple architecture

Wilson Yan 470 Dec 30, 2022
PyTorch code for JEREX: Joint Entity-Level Relation Extractor

JEREX: "Joint Entity-Level Relation Extractor" PyTorch code for JEREX: "Joint Entity-Level Relation Extractor". For a description of the model and exp

LAVIS - NLP Working Group 50 Dec 01, 2022
ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

Yanda Meng 14 May 13, 2022