Twin-deep neural network for semi-supervised learning of materials properties

Related tags

Deep Learningtsdnn
Overview

Deep Semi-Supervised Teacher-Student Material Synthesizability Prediction

Citation:

Semi-supervised teacher-student deep neural network for materials discovery” by Daniel Gleaves, Edirisuriya M. Dilanga Siriwardane,Yong Zhao, and JianjunHu.

Machine learning and evolution laboratory

Department of Computer Science and Engineering

University of South Carolina


This software package implements the Meta Pseudo Labels (MPL) semi-supervised learning method with Crystal Graph Convolutional Neural Networks (CGCNN) with that takes an arbitary crystal structure to predict material synthesizability and whether it has positive or negative formation energy

The package provides two major functions:

  • Train a semi-supervised TSDNN classification model with a customized dataset.
  • Predict material synthesizability and formation energy of new crystals with a pre-trained TSDNN model.

The following paper describes the details of the CGCNN architecture, a graph neural network model for materials property prediction: CGCNN paper

The following paper describes the details of the semi-supervised learning framework that we used in our model: Meta Pseudo Labels

Table of Contents

Prerequisites

This package requires:

If you are new to Python, the easiest way of installing the prerequisites is via conda. After installing conda, run the following command to create a new environment named cgcnn and install all prerequisites:

conda upgrade conda
conda create -n tsdnn python=3 scikit-learn pytorch torchvision pymatgen -c pytorch -c conda-forge

*Note: this code is tested for PyTorch v1.0.0+ and is not compatible with versions below v0.4.0 due to some breaking changes.

This creates a conda environment for running TSDNN. Before using TSDNN, activate the environment by:

conda activate tsdnn

Usage

Define a customized dataset

To input crystal structures to TSDNN, you will need to define a customized dataset. Note that this is required for both training and predicting.

Before defining a customized dataset, you will need:

  • CIF files recording the structure of the crystals that you are interested in
  • The target label for each crystal (not needed for predicting, but you need to put some random numbers in data_test.csv)

You can create a customized dataset by creating a directory root_dir with the following files:

  1. data_labeled.csv: a CSV file with two columns. The first column recodes a unique ID for each crystal, and the second column recodes the known value of the target label.

  2. data_unlabeled.csv: a CSV file with two columns. The first column recodes a unique ID for each crystal, and the second column can be filled with alternating 1 and 0 (the second column is still needed).

  3. atom_init.json: a JSON file that stores the initialization vector for each element. An example of atom_init.json is data/sample-regression/atom_init.json, which should be good for most applications.

  4. ID.cif: a CIF file that recodes the crystal structure, where ID is the unique ID for the crystal.

(4.) data_predict: a CSV file with two columns. The first column recodes a unique ID for each crystal, and the second column can be filled with alternating 1 and 0 (the second column is still needed). This is the file that will be used if you want to classify materials with predict.py.

The structure of the root_dir should be:

root_dir
├── data_labeled.csv
├── data_unlabeled.csv
├── data_test.csv
├── data_positive.csv (optional- for positive and unlabeled dataset generation)
├── data_unlabeled_full.csv (optional- for positive and unlabeled dataset generation, data_unlabeled.csv will be overwritten)
├── atom_init.json
├── id0.cif
├── id1.cif
├── ...

There is an example of customized a dataset in: data/example.

Train a TSDNN model

Before training a new TSDNN model, you will need to:

Then, in directory synth-tsdnn, you can train a TSDNN model for your customized dataset by:

python main.py root_dir

If you want to use the PU learning dataset generation, you can train a model using the --uds flag with the number of PU iterations to perform.

python main.py --uds 5 root_dir

You can set the number of training, validation, and test data with labels --train-size, --val-size, and --test-size. Alternatively, you may use the flags --train-ratio, --val-ratio, --test-ratio instead. Note that the ratio flags cannot be used with the size flags simultaneously. For instance, data/example has 10 data points in total. You can train a model by:

python main.py --train-size 6 --val-size 2 --test-size 2 data/example

or alternatively

python main.py --train-ratio 0.6 --val-ratio 0.2 --test-ratio 0.2 data/example

After training, you will get 5 files in synth-tsdnn directory.

  • checkpoints/teacher_best.pth.tar: stores the TSDNN teacher model with the best validation accuracy.
  • checkpoints/student_best.pth.tar" stores the TSDNN student model with the best validation accuracy.
  • checkpoints/t_checkpoint.pth.tar: stores the TSDNN teacher model at the last epoch.
  • checkpoints/s_checkpoint.pth.tar: stores the TSDNN student model at the last epoch.
  • results/validation/test_results.csv: stores the ID and predicted value for each crystal in training set.

Predict material properties with a pre-trained TSDNN model

Before predicting the material properties, you will need to:

  • Define a customized dataset at root_dir for all the crystal structures that you want to predict.
  • Obtain a pre-trained TSDNN model (example found in checkpoints/pre-trained/pre-train.pth.tar).

Then, in directory synth-tsdnn, you can predict the properties of the crystals in root_dir:

python predict.py checkpoints/pre-trained/pre-trained.pth.tar data/root_dir

After predicting, you will get one file in synth-tsdnn directory:

  • predictions.csv: stores the ID and predicted value for each crystal in test set.

Data

To reproduce our paper, you can download the corresponding datasets following the instruction. Each dataset discussed can be found in data/datasets/

Authors

This software was primarily written by Daniel Gleaves who was advised by Prof. Jianjun Hu. This software builds upon work by Tian Xie, Hieu Pham, and Jungdae Kim.

Acknowledgements

Research reported in this work was supported in part by NSF under grants 1940099 and 1905775. The views, perspective,and content do not necessarily represent the official views of NSF. This work was supported in part by the South Carolina Honors College Research Program. This work is partially supported by a grant from the University of South Carolina Magellan Scholar Program.

License

TSDNN is released under the MIT License.

Owner
MLEG
MLEG
This is the official implementation of our proposed SwinMR

SwinMR This is the official implementation of our proposed SwinMR: Swin Transformer for Fast MRI Please cite: @article{huang2022swin, title={Swi

A Yang Lab (led by Dr Guang Yang) 27 Nov 17, 2022
TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1).

M1-tensorflow-benchmark TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1). I was initially testing if Tens

particle 2 Jan 05, 2022
Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples

Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples (WACV 2022) and Beyond Simple Meta-Learning: Multi-Purpose Model

PLAI Group at UBC 42 Dec 06, 2022
Modular Gaussian Processes

Modular Gaussian Processes for Transfer Learning 🧩 Introduction This repository contains the implementation of our paper Modular Gaussian Processes f

Pablo Moreno-Muñoz 10 Mar 15, 2022
Jarvis Project is a basic virtual assistant that uses TensorFlow for learning.

Jarvis_proyect Jarvis Project is a basic virtual assistant that uses TensorFlow for learning. Latest version 0.1 Features: Good morning protocol Tell

Anze Kovac 3 Aug 31, 2022
Marine debris detection with commercial satellite imagery and deep learning.

Marine debris detection with commercial satellite imagery and deep learning. Floating marine debris is a global pollution problem which threatens mari

Inter Agency Implementation and Advanced Concepts 56 Dec 16, 2022
Spectralformer: Rethinking hyperspectral image classification with transformers

The code in this toolbox implements the "Spectralformer: Rethinking hyperspectral image classification with transformers". More specifically, it is detailed as follow.

Danfeng Hong 104 Jan 04, 2023
PyTorch-Multi-Style-Transfer - Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 906 Jan 04, 2023
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

44 Sep 15, 2022
This is a yolo3 implemented via tensorflow 2.7

YoloV3 - an object detection algorithm implemented via TF 2.x source code In this article I assume you've already familiar with basic computer vision

2 Jan 17, 2022
Machine Learning University: Accelerated Computer Vision Class

Machine Learning University: Accelerated Computer Vision Class This repository contains slides, notebooks, and datasets for the Machine Learning Unive

AWS Samples 1.3k Dec 28, 2022
Self-Guided Contrastive Learning for BERT Sentence Representations

Self-Guided Contrastive Learning for BERT Sentence Representations This repository is dedicated for releasing the implementation of the models utilize

Taeuk Kim 16 Dec 04, 2022
Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021)

Substrate_Mediated_Invasion Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021) 2DSolver.jl reproduces the simulat

Matthew Simpson 0 Nov 09, 2021
CAR-API: Cityscapes Attributes Recognition API

CAR-API: Cityscapes Attributes Recognition API This is the official api to download and fetch attributes annotations for Cityscapes Dataset. Content I

Kareem Metwaly 5 Dec 22, 2022
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
Sleep staging from ECG, assisted with EEG

Sleep_Staging_Knowledge Distillation This codebase implements knowledge distillation approach for ECG based sleep staging assisted by EEG based sleep

2 Dec 12, 2022
[CVPR 2019 Oral] Multi-Channel Attention Selection GAN with Cascaded Semantic Guidance for Cross-View Image Translation

SelectionGAN for Guided Image-to-Image Translation CVPR Paper | Extended Paper | Guided-I2I-Translation-Papers Citation If you use this code for your

Hao Tang 424 Dec 02, 2022
StyleGAN2 - Official TensorFlow Implementation

StyleGAN2 - Official TensorFlow Implementation

NVIDIA Research Projects 10.1k Dec 28, 2022
DeOldify - A Deep Learning based project for colorizing and restoring old images (and video!)

DeOldify - A Deep Learning based project for colorizing and restoring old images (and video!)

Jason Antic 15.8k Jan 04, 2023
Implementation of Hourglass Transformer, in Pytorch, from Google and OpenAI

Hourglass Transformer - Pytorch (wip) Implementation of Hourglass Transformer, in Pytorch. It will also contain some of my own ideas about how to make

Phil Wang 61 Dec 25, 2022