Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Overview

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data
(CVPR 2022)

teaser2

Potentials of primitive shapes for representing things. We only use a line, ellipse, and rectangle to express a cat and a temple. These examples motivate us to develop Primitives, which generates the data by a simple composition of the shapes.

Official pytorch implementation of "Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data"

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data
Kyungjune Baek and Hyunjung Shim

Yonsei University

Absract Transfer learning for GANs successfully improves generation performance under low-shot regimes. However, existing studies show that the pretrained model using a single benchmark dataset is not generalized to various target datasets. More importantly, the pretrained model can be vulnerable to copyright or privacy risks as membership inference attack advances. To resolve both issues, we propose an effective and unbiased data synthesizer, namely Primitives-PS, inspired by the generic characteristics of natural images. Specifically, we utilize 1) the generic statistics on the frequency magnitude spectrum, 2) the elementary shape (i.e., image composition via elementary shapes) for representing the structure information, and 3) the existence of saliency as prior. Since our synthesizer only considers the generic properties of natural images, the single model pretrained on our dataset can be consistently transferred to various target datasets, and even outperforms the previous methods pretrained with the natural images in terms of Fr'echet inception distance. Extensive analysis, ablation study, and evaluations demonstrate that each component of our data synthesizer is effective, and provide insights on the desirable nature of the pretrained model for the transferability of GANs.

Requirement

Environment

For the easy construction of environment, please use the docker image.

  • Replace $DOCKER_CONTAINER_NAME, $LOCAL_MAPPING_DIRECTORY, and $DOCKER_MAPPING_DIRECTORY to your own name and directories.
nvidia-docker run -it --entrypoint /bin/bash --shm-size 96g --name $DOCKER_CONTAINER_NAME -v $LOCAL_MAPPING_DIRECTORY:$DOCKER_MAPPING_DIRECTORY bkjbkj12/stylegan2_ada-pytorch1.8:1.0

nvidia-docker start $DOCKER_CONTAINER_NAME
nvidia-docker exec -it $DOCKER_CONTAINER_NAME bash

Then, go to the directory containing the source code

Dataset

The low-shot datasets are from DiffAug repository.

Pretrained checkpoint

Please download the source model (pretrained model) below. (Mainly used Primitives-PS)

Hardware

  • Mainly tested on Titan XP (12GB), V100 (32GB) and A6000 (48GB).

How to Run (Quick Start)

Pretraining To change the type of the pretraining dataset, comment out ant in these lines.

The file "noise.zip" is not required. (Just running the script will work well.)

CUDA_VISIBLE_DEVICES=$GPU_NUMBER python train.py --outdir=$OUTPUT_DIR --data=./data/noise.zip --gpus=1

Finetuning Change or locate the pretrained pkl file into the directory specified at the code.

CUDA_VISIBLE_DEVICES=$GPU_NUMBER python train.py --outdir=$OUTPUT_DIR --gpus=1 --data $DATA_DIR --kimg 400 --resume $PKL_NAME_TO_RESUME

Examples

Pretraining:
CUDA_VISIBLE_DEVICES=0 python train.py --outdir=Primitives-PS-Pretraining --data=./data/noise.zip --gpus=1

Finetuning:
CUDA_VISIBLE_DEVICES=0 python train.py --outdir=Primitives-PS-to-Obama --gpus=1 --data ../data/obama.zip --kimg 400 --resume Primitives-PS

Pretrained Model

Download

Google Drive

PinkNoise Primitives Primitives-S Primitives-PS
Obama Grumpy Cat Panda Bridge of Sigh
Medici fountain Temple of heaven Wuzhen Buildings

Synthetic Datasets

image

Results

Generating images from the same latent vector

SameVector

GIF

Because of the limitation on the file size, the model dose not fully converge (total 400K but .gif contains 120K iterations).

gif_1

Low-shot generation

low-shot

CIFAR

samples0

interpZ0

Note

This repository is built upon DiffAug.

Citation

If you find this work useful for your research, please cite our paper:

@InProceedings{Baek2022Commonality,
    author    = {Baek, Kyungjune and Shim, Hyunjung},
    title     = {Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
    year      = {2022}
}
Owner
Ph. D. student at School of Integrated Technology in Yonsei Univ., Korea absence: KST 4.28 ~ 5.19
'Aligned mixture of latent dynamical systems' (amLDS) for stimulus decoding probabilistic manifold alignment across animals. P. Herrero-Vidal et al. NeurIPS 2021 code.

Across-animal odor decoding by probabilistic manifold alignment (NeurIPS 2021) This repository is the official implementation of aligned mixture of la

Pedro Herrero-Vidal 3 Jul 12, 2022
This is a file about Unet implemented in Pytorch

Unet this is an implemetion of Unet in Pytorch and it's architecture is as follows which is the same with paper of Unet component of Unet Convolution

Dragon 1 Dec 03, 2021
PyTorch implementation of SimSiam: Exploring Simple Siamese Representation Learning

SimSiam: Exploring Simple Siamese Representation Learning This is a PyTorch implementation of the SimSiam paper: @Article{chen2020simsiam, author =

Facebook Research 834 Dec 30, 2022
Implementation of SegNet: A Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-Wise Labelling

Caffe SegNet This is a modified version of Caffe which supports the SegNet architecture As described in SegNet: A Deep Convolutional Encoder-Decoder A

Alex Kendall 1.1k Jan 02, 2023
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
Wenzhou-Kean University AI-LAB

AI-LAB This is Wenzhou-Kean University AI-LAB. Our research interests are in Computer Vision and Natural Language Processing. Computer Vision Please g

WKU AI-LAB 10 May 05, 2022
Wind Speed Prediction using LSTMs in PyTorch

Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu

Onur Kaplan 151 Dec 14, 2022
StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

3k Jan 08, 2023
SoK: Vehicle Orientation Representations for Deep Rotation Estimation

SoK: Vehicle Orientation Representations for Deep Rotation Estimation Raymond H. Tu, Siyuan Peng, Valdimir Leung, Richard Gao, Jerry Lan This is the o

FIRE Capital One Machine Learning of the University of Maryland 12 Oct 07, 2022
CN24 is a complete semantic segmentation framework using fully convolutional networks

Build status: master (production branch): develop (development branch): Welcome to the CN24 GitHub repository! CN24 is a complete semantic segmentatio

Computer Vision Group Jena 123 Jul 14, 2022
Hybrid Neural Fusion for Full-frame Video Stabilization

FuSta: Hybrid Neural Fusion for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 430 Jan 04, 2023
This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised and Tiny ML scenarios"

TinyWeaklyIsolationForest This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised a

2 Mar 21, 2022
CVPR2022 (Oral) - Rethinking Semantic Segmentation: A Prototype View

Rethinking Semantic Segmentation: A Prototype View Rethinking Semantic Segmentation: A Prototype View, Tianfei Zhou, Wenguan Wang, Ender Konukoglu and

Tianfei Zhou 239 Dec 26, 2022
A PyTorch implementation of the continual learning experiments with deep neural networks

Brain-Inspired Replay A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper: Brain

182 Dec 27, 2022
NNR conformation conditional and global probabilities estimation and analysis in peptides or proteins fragments

NNR and global probabilities estimation and analysis in peptides or protein fragments This module calculates global and NNR conformation dependent pro

0 Jul 15, 2021
Code for Learning to Segment The Tail (LST)

Learning to Segment the Tail [arXiv] In this repository, we release code for Learning to Segment The Tail (LST). The code is directly modified from th

47 Nov 07, 2022
working repo for my xumx-sliCQ submissions to the ISMIR 2021 MDX

Music Demixing Challenge - xumx-sliCQ This repository is the GitHub mirror of my working submission repository for the AICrowd ISMIR 2021 Music Demixi

4 Aug 25, 2021
PyTorch implementation of the paper Dynamic Token Normalization Improves Vision Transfromers.

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit

EvoJAX: Hardware-Accelerated Neuroevolution EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit. Built on top of the JA

Google 598 Jan 07, 2023
Anonymous implementation of KSL

k-Step Latent (KSL) Implementation of k-Step Latent (KSL) in PyTorch. Representation Learning for Data-Efficient Reinforcement Learning [Paper] Code i

1 Nov 10, 2021