A PyTorch implementation of the continual learning experiments with deep neural networks

Overview

Brain-Inspired Replay

A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper:

This paper proposes a new, brain-inspired version of generative replay that can scale to continual learning problems with natural images as inputs. This is demonstrated with the Split CIFAR-100 protocol, both for task-incremental learning and for class-incremental learning.

Installation & requirements

The current version of the code has been tested with Python 3.5.2 on several Linux operating systems with the following versions of PyTorch and Torchvision:

  • pytorch 1.1.0
  • torchvision 0.2.2

The versions that were used for other Python-packages are listed in requirements.txt.

To use the code, download the repository and change into it:

git clone https://github.com/GMvandeVen/brain-inspired-replay.git
cd brain-inspired-replay

(If downloading the zip-file, extract the files and change into the extracted folder.)

Assuming Python and pip are set up, the Python-packages used by this code can be installed using:

pip install -r requirements.txt

However, you might want to install pytorch and torchvision in a slightly different way to ensure compatability with your version of CUDA (see https://pytorch.org/).

Finally, the code in this repository itself does not need to be installed, but a number of scripts should be made executable:

chmod +x main_*.py compare_*.py create_figures.sh

Demos

Demo 1: Brain-inspired replay on split MNIST

./main_cl.py --experiment=splitMNIST --scenario=class --replay=generative --brain-inspired --pdf

This runs a single continual learning experiment: brain-inspired replay on the class-incremental learning scenario of split MNIST. Information about the data, the model, the training progress and the produced outputs (e.g., a pdf with results) is printed to the screen. Expected run-time on a standard laptop is ~12 minutes, with a GPU it should take ~4 minutes.

Demo 2: Comparison of continual learning methods

./compare_MNIST.py --scenario=class

This runs a series of continual learning experiments to compare the performance of various methods. Information about the different experiments, their progress and the produced outputs (e.g., a summary pdf) is printed to the screen. Expected run-time on a standard laptop is ~50 minutes, with a GPU it should take ~18 minutes.

These two demos can also be run with on-the-fly plots using the flag --visdom. For this visdom must be activated first, see instructions below.

Running comparisons from the paper

The script create_figures.sh provides step-by-step instructions for re-running the experiments and re-creating the figures reported in the paper.

Although it is possible to run this script as it is, it will take very long and it is probably sensible to parallellize the experiments.

Running custom experiments

Using main_cl.py, it is possible to run custom individual experiments. The main options for this script are:

  • --experiment: which task protocol? (splitMNIST|permMNIST|CIFAR100)
  • --scenario: according to which scenario? (task|domain|class)
  • --tasks: how many tasks?

To run specific methods, use the following:

  • Context-dependent-Gating (XdG): ./main_cl.py --xdg --xdg-prop=0.8
  • Elastic Weight Consolidation (EWC): ./main_cl.py --ewc --lambda=5000
  • Online EWC: ./main_cl.py --ewc --online --lambda=5000 --gamma=1
  • Synaptic Intelligenc (SI): ./main_cl.py --si --c=0.1
  • Learning without Forgetting (LwF): ./main_cl.py --replay=current --distill
  • Generative Replay (GR): ./main_cl.py --replay=generative
  • Brain-Inspired Replay (BI-R): ./main_cl.py --replay=generative --brain-inspired

For information on further options: ./main_cl.py -h.

PyTorch-implementations for several methods relying on stored data (Experience Replay, iCaRL and A-GEM), as well as for additional metrics (FWT, BWT, forgetting, intransigence), can be found here: https://github.com/GMvandeVen/continual-learning.

On-the-fly plots during training

With this code it is possible to track progress during training with on-the-fly plots. This feature requires visdom. Before running the experiments, the visdom server should be started from the command line:

python -m visdom.server

The visdom server is now alive and can be accessed at http://localhost:8097 in your browser (the plots will appear there). The flag --visdom should then be added when calling ./main_cl.py to run the experiments with on-the-fly plots.

For more information on visdom see https://github.com/facebookresearch/visdom.

Citation

Please consider citing our paper if you use this code in your research:

@article{vandeven2020brain,
  title={Brain-inspired replay for continual learning with artificial neural networks},
  author={van de Ven, Gido M and Siegelmann, Hava T and Tolias, Andreas S},
  journal={Nature Communications},
  volume={11},
  pages={4069},
  year={2020}
}

Acknowledgments

The research project from which this code originated has been supported by an IBRO-ISN Research Fellowship, by the Lifelong Learning Machines (L2M) program of the Defence Advanced Research Projects Agency (DARPA) via contract number HR0011-18-2-0025 and by the Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior/Interior Business Center (DoI/IBC) contract number D16PC00003. Disclaimer: views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of DARPA, IARPA, DoI/IBC, or the U.S. Government.

Owner
Working at the intersection of Machine Learning, Computational Neuroscience and Cognitive Science.
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 864 Dec 30, 2022
Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020

XDVioDet Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020. The proj

peng 64 Dec 12, 2022
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

Object DGCNN & DETR3D This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110

Wang, Yue 539 Jan 07, 2023
PromptDet: Expand Your Detector Vocabulary with Uncurated Images

PromptDet: Expand Your Detector Vocabulary with Uncurated Images Paper Website Introduction The goal of this work is to establish a scalable pipeline

103 Dec 20, 2022
Implementation for paper: Self-Regulation for Semantic Segmentation

Self-Regulation for Semantic Segmentation This is the PyTorch implementation for paper Self-Regulation for Semantic Segmentation, ICCV 2021. Citing SR

Dong ZHANG 30 Nov 21, 2022
Notification Triggers for Python

Notipyer Notification triggers for Python Send async email notifications via Python. Get updates/crashlogs from your scripts with ease. Installation p

Chirag Jain 17 May 16, 2022
Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021)

Substrate_Mediated_Invasion Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021) 2DSolver.jl reproduces the simulat

Matthew Simpson 0 Nov 09, 2021
PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi

PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi PIKA is a lightweight speech processing toolkit based on Pytorch and (Py)

336 Nov 25, 2022
PoseViz – Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.

PoseViz – 3D Human Pose Visualizer Multi-person, multi-camera 3D human pose visualization tool built using Mayavi. As used in MeTRAbs visualizations.

István Sárándi 79 Dec 30, 2022
The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition.

OverlapTransformer The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for

HAOMO.AI 136 Jan 03, 2023
FluidNet re-written with ATen tensor lib

fluidnet_cxx: Accelerating Fluid Simulation with Convolutional Neural Networks. A PyTorch/ATen Implementation. This repository is based on the paper,

JoliBrain 50 Jun 07, 2022
Differentiable scientific computing library

xitorch: differentiable scientific computing library xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely

98 Dec 26, 2022
🐤 Nix-TTS: An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation

🐤 Nix-TTS An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation Rendi Chevi, Radityo Eko Prasojo, Alham Fikri Aji

Rendi Chevi 156 Jan 09, 2023
Predicts an answer in yes or no.

Oui-ou-non-prediction Predicts an answer in 'yes' or 'no'. It is based on the game 'effeuiller la marguerite' in which the person plucks flower petals

Ananya Gupta 1 Jan 15, 2022
Our solution for SSN Invente 2021's Hackathon

Our solution for SSN Invente 2021's Hackathon. To help maitain godowns in a pristine and safe condition using raspberry pi.

1 Jan 12, 2022
Tools for manipulating UVs in the Blender viewport.

UV Tool Suite for Blender A set of tools to make editing UVs easier in Blender. These tools can be accessed wither through the Kitfox - UV panel on th

35 Oct 29, 2022
Blind Video Temporal Consistency via Deep Video Prior

deep-video-prior (DVP) Code for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior PyTorch implementation | paper | project web

Chenyang LEI 272 Dec 21, 2022
[BMVC2021] "TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation"

TransFusion-Pose TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation Haoyu Ma, Liangjian Chen, Deying Kong, Zhe Wang, Xingwei

Haoyu Ma 29 Dec 23, 2022
PyTorch implementation of a Real-ESRGAN model trained on custom dataset

Real-ESRGAN PyTorch implementation of a Real-ESRGAN model trained on custom dataset. This model shows better results on faces compared to the original

Sber AI 160 Jan 04, 2023
Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing

EGFNet Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing Dataset and Results Test maps: 百度网盘 提取码:zust Citation @ARTICLE{ author={Zhou,

ShaohuaDong 10 Dec 08, 2022