A PyTorch implementation of the continual learning experiments with deep neural networks

Overview

Brain-Inspired Replay

A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper:

This paper proposes a new, brain-inspired version of generative replay that can scale to continual learning problems with natural images as inputs. This is demonstrated with the Split CIFAR-100 protocol, both for task-incremental learning and for class-incremental learning.

Installation & requirements

The current version of the code has been tested with Python 3.5.2 on several Linux operating systems with the following versions of PyTorch and Torchvision:

  • pytorch 1.1.0
  • torchvision 0.2.2

The versions that were used for other Python-packages are listed in requirements.txt.

To use the code, download the repository and change into it:

git clone https://github.com/GMvandeVen/brain-inspired-replay.git
cd brain-inspired-replay

(If downloading the zip-file, extract the files and change into the extracted folder.)

Assuming Python and pip are set up, the Python-packages used by this code can be installed using:

pip install -r requirements.txt

However, you might want to install pytorch and torchvision in a slightly different way to ensure compatability with your version of CUDA (see https://pytorch.org/).

Finally, the code in this repository itself does not need to be installed, but a number of scripts should be made executable:

chmod +x main_*.py compare_*.py create_figures.sh

Demos

Demo 1: Brain-inspired replay on split MNIST

./main_cl.py --experiment=splitMNIST --scenario=class --replay=generative --brain-inspired --pdf

This runs a single continual learning experiment: brain-inspired replay on the class-incremental learning scenario of split MNIST. Information about the data, the model, the training progress and the produced outputs (e.g., a pdf with results) is printed to the screen. Expected run-time on a standard laptop is ~12 minutes, with a GPU it should take ~4 minutes.

Demo 2: Comparison of continual learning methods

./compare_MNIST.py --scenario=class

This runs a series of continual learning experiments to compare the performance of various methods. Information about the different experiments, their progress and the produced outputs (e.g., a summary pdf) is printed to the screen. Expected run-time on a standard laptop is ~50 minutes, with a GPU it should take ~18 minutes.

These two demos can also be run with on-the-fly plots using the flag --visdom. For this visdom must be activated first, see instructions below.

Running comparisons from the paper

The script create_figures.sh provides step-by-step instructions for re-running the experiments and re-creating the figures reported in the paper.

Although it is possible to run this script as it is, it will take very long and it is probably sensible to parallellize the experiments.

Running custom experiments

Using main_cl.py, it is possible to run custom individual experiments. The main options for this script are:

  • --experiment: which task protocol? (splitMNIST|permMNIST|CIFAR100)
  • --scenario: according to which scenario? (task|domain|class)
  • --tasks: how many tasks?

To run specific methods, use the following:

  • Context-dependent-Gating (XdG): ./main_cl.py --xdg --xdg-prop=0.8
  • Elastic Weight Consolidation (EWC): ./main_cl.py --ewc --lambda=5000
  • Online EWC: ./main_cl.py --ewc --online --lambda=5000 --gamma=1
  • Synaptic Intelligenc (SI): ./main_cl.py --si --c=0.1
  • Learning without Forgetting (LwF): ./main_cl.py --replay=current --distill
  • Generative Replay (GR): ./main_cl.py --replay=generative
  • Brain-Inspired Replay (BI-R): ./main_cl.py --replay=generative --brain-inspired

For information on further options: ./main_cl.py -h.

PyTorch-implementations for several methods relying on stored data (Experience Replay, iCaRL and A-GEM), as well as for additional metrics (FWT, BWT, forgetting, intransigence), can be found here: https://github.com/GMvandeVen/continual-learning.

On-the-fly plots during training

With this code it is possible to track progress during training with on-the-fly plots. This feature requires visdom. Before running the experiments, the visdom server should be started from the command line:

python -m visdom.server

The visdom server is now alive and can be accessed at http://localhost:8097 in your browser (the plots will appear there). The flag --visdom should then be added when calling ./main_cl.py to run the experiments with on-the-fly plots.

For more information on visdom see https://github.com/facebookresearch/visdom.

Citation

Please consider citing our paper if you use this code in your research:

@article{vandeven2020brain,
  title={Brain-inspired replay for continual learning with artificial neural networks},
  author={van de Ven, Gido M and Siegelmann, Hava T and Tolias, Andreas S},
  journal={Nature Communications},
  volume={11},
  pages={4069},
  year={2020}
}

Acknowledgments

The research project from which this code originated has been supported by an IBRO-ISN Research Fellowship, by the Lifelong Learning Machines (L2M) program of the Defence Advanced Research Projects Agency (DARPA) via contract number HR0011-18-2-0025 and by the Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior/Interior Business Center (DoI/IBC) contract number D16PC00003. Disclaimer: views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of DARPA, IARPA, DoI/IBC, or the U.S. Government.

Owner
Working at the intersection of Machine Learning, Computational Neuroscience and Cognitive Science.
Methods to get the probability of a changepoint in a time series.

Bayesian Changepoint Detection Methods to get the probability of a changepoint in a time series. Both online and offline methods are available. Read t

Johannes Kulick 554 Dec 30, 2022
Unofficial implementation of the Involution operation from CVPR 2021

involution_pytorch Unofficial PyTorch implementation of "Involution: Inverting the Inherence of Convolution for Visual Recognition" by Li et al. prese

Rishabh Anand 46 Dec 07, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023
Train neural network for semantic segmentation (deep lab V3) with pytorch in less then 50 lines of code

Train neural network for semantic segmentation (deep lab V3) with pytorch in 50 lines of code Train net semantic segmentation net using Trans10K datas

17 Dec 19, 2022
Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

2 Dec 28, 2021
MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks

MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks Introduction This repo contains the pytorch impl

Meta Research 38 Oct 10, 2022
AirCode: A Robust Object Encoding Method

AirCode This repo contains source codes for the arXiv preprint "AirCode: A Robust Object Encoding Method" Demo Object matching comparison when the obj

Chen Wang 30 Dec 09, 2022
Hippocampal segmentation using the UNet network for each axis

Hipposeg Hippocampal segmentation using the UNet network for each axis, inspired by https://github.com/MICLab-Unicamp/e2dhipseg Red: False Positive Gr

Juan Carlos Aguirre Arango 0 Sep 02, 2021
A Convolutional Transformer for Keyword Spotting

☢️ Audiomer ☢️ Audiomer: A Convolutional Transformer for Keyword Spotting [ arXiv ] [ Previous SOTA ] [ Model Architecture ] Results on SpeechCommands

49 Jan 27, 2022
optimization routines for hyperparameter tuning

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

Marc Claesen 398 Nov 09, 2022
Virtual hand gesture mouse using a webcam

NonMouse 日本語のREADMEはこちら This is an application that allows you to use your hand itself as a mouse. The program uses a web camera to recognize your han

Yuki Takeyama 55 Jan 01, 2023
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models (published in ICLR2018)

Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models Pouya Samangouei*, Maya Kabkab*, Rama Chellappa [*: authors co

Maya Kabkab 212 Dec 07, 2022
A hyperparameter optimization framework

Optuna: A hyperparameter optimization framework Website | Docs | Install Guide | Tutorial Optuna is an automatic hyperparameter optimization software

7.4k Jan 04, 2023
Dungeons and Dragons randomized content generator

Component based Dungeons and Dragons generator Supports Entity/Monster Generation NPC Generation Weapon Generation Encounter Generation Environment Ge

Zac 3 Dec 04, 2021
Official repository for "Intriguing Properties of Vision Transformers" (2021)

Intriguing Properties of Vision Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, & Ming-Hsuan Yang P

Muzammal Naseer 155 Dec 27, 2022
Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it

Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it. Study notes and a curated list of awesome resources of such topics.

mani 1.2k Jan 07, 2023
SimDeblur is a simple framework for image and video deblurring, implemented by PyTorch

SimDeblur (Simple Deblurring) is an open source framework for image and video deblurring toolbox based on PyTorch, which contains most deep-learning based state-of-the-art deblurring algorithms. It i

220 Jan 07, 2023
Faster RCNN pytorch windows

Faster-RCNN-pytorch-windows Faster RCNN implementation with pytorch for windows Open cmd, compile this comands: cd lib python setup.py build develop T

Hwa-Rang Kim 1 Nov 11, 2022
tmm_fast is a lightweight package to speed up optical planar multilayer thin-film device computation.

tmm_fast tmm_fast or transfer-matrix-method_fast is a lightweight package to speed up optical planar multilayer thin-film device computation. It is es

26 Dec 11, 2022