PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

Related tags

Deep Learningmoco
Overview

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

This is a PyTorch implementation of the MoCo paper:

@Article{he2019moco,
  author  = {Kaiming He and Haoqi Fan and Yuxin Wu and Saining Xie and Ross Girshick},
  title   = {Momentum Contrast for Unsupervised Visual Representation Learning},
  journal = {arXiv preprint arXiv:1911.05722},
  year    = {2019},
}

It also includes the implementation of the MoCo v2 paper:

@Article{chen2020mocov2,
  author  = {Xinlei Chen and Haoqi Fan and Ross Girshick and Kaiming He},
  title   = {Improved Baselines with Momentum Contrastive Learning},
  journal = {arXiv preprint arXiv:2003.04297},
  year    = {2020},
}

Preparation

Install PyTorch and ImageNet dataset following the official PyTorch ImageNet training code.

This repo aims to be minimal modifications on that code. Check the modifications by:

diff main_moco.py <(curl https://raw.githubusercontent.com/pytorch/examples/master/imagenet/main.py)
diff main_lincls.py <(curl https://raw.githubusercontent.com/pytorch/examples/master/imagenet/main.py)

Unsupervised Training

This implementation only supports multi-gpu, DistributedDataParallel training, which is faster and simpler; single-gpu or DataParallel training is not supported.

To do unsupervised pre-training of a ResNet-50 model on ImageNet in an 8-gpu machine, run:

python main_moco.py \
  -a resnet50 \
  --lr 0.03 \
  --batch-size 256 \
  --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 \
  [your imagenet-folder with train and val folders]

This script uses all the default hyper-parameters as described in the MoCo v1 paper. To run MoCo v2, set --mlp --moco-t 0.2 --aug-plus --cos.

Note: for 4-gpu training, we recommend following the linear lr scaling recipe: --lr 0.015 --batch-size 128 with 4 gpus. We got similar results using this setting.

Linear Classification

With a pre-trained model, to train a supervised linear classifier on frozen features/weights in an 8-gpu machine, run:

python main_lincls.py \
  -a resnet50 \
  --lr 30.0 \
  --batch-size 256 \
  --pretrained [your checkpoint path]/checkpoint_0199.pth.tar \
  --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 \
  [your imagenet-folder with train and val folders]

Linear classification results on ImageNet using this repo with 8 NVIDIA V100 GPUs :

pre-train
epochs
pre-train
time
MoCo v1
top-1 acc.
MoCo v2
top-1 acc.
ResNet-50 200 53 hours 60.8±0.2 67.5±0.1

Here we run 5 trials (of pre-training and linear classification) and report mean±std: the 5 results of MoCo v1 are {60.6, 60.6, 60.7, 60.9, 61.1}, and of MoCo v2 are {67.7, 67.6, 67.4, 67.6, 67.3}.

Models

Our pre-trained ResNet-50 models can be downloaded as following:

epochs mlp aug+ cos top-1 acc. model md5
MoCo v1 200 60.6 download b251726a
MoCo v2 200 67.7 download 59fd9945
MoCo v2 800 71.1 download a04e12f8

Transferring to Object Detection

See ./detection.

License

This project is under the CC-BY-NC 4.0 license. See LICENSE for details.

See Also

Owner
Meta Research
Meta Research
TICC is a python solver for efficiently segmenting and clustering a multivariate time series

TICC TICC is a python solver for efficiently segmenting and clustering a multivariate time series. It takes as input a T-by-n data matrix, a regulariz

406 Dec 12, 2022
PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images

wrist-d PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images note: Paper: Under Review at MPDI Diagnostics Submission Date: Novemb

Fatih UYSAL 5 Oct 12, 2022
Run object detection model on the Raspberry Pi

Using TensorFlow Lite with Python is great for embedded devices based on Linux, such as Raspberry Pi.

Dimitri Yanovsky 6 Oct 08, 2022
[ACM MM 2021] Joint Implicit Image Function for Guided Depth Super-Resolution

Joint Implicit Image Function for Guided Depth Super-Resolution This repository contains the code for: Joint Implicit Image Function for Guided Depth

hawkey 78 Dec 27, 2022
This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing described in paper Discontinuous Grammar as a Foreign Language.

Discontinuous Grammar as a Foreign Language This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing

Daniel Fernández-González 2 Apr 07, 2022
Convert human motion from video to .bvh

video_to_bvh Convert human motion from video to .bvh with Google Colab Usage 1. Open video_to_bvh.ipynb in Google Colab Go to https://colab.research.g

Dene 306 Dec 10, 2022
Using VideoBERT to tackle video prediction

VideoBERT This repo reproduces the results of VideoBERT (https://arxiv.org/pdf/1904.01766.pdf). Inspiration was taken from https://github.com/MDSKUL/M

75 Dec 14, 2022
Official code for the paper "Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks".

Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks This repository contains the official code for the

Linus Ericsson 11 Dec 16, 2022
Towards Multi-Camera 3D Human Pose Estimation in Wild Environment

PanopticStudio Toolbox This repository has a toolbox to download, process, and visualize the Panoptic Studio (Panoptic) data. Note: Sep-21-2020: Curre

335 Jan 09, 2023
The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

This repository is the official PyTorch implementation of SAINT. Find the paper on arxiv SAINT: Improved Neural Networks for Tabular Data via Row Atte

Gowthami Somepalli 284 Dec 21, 2022
Adversarial Autoencoders

Adversarial Autoencoders (with Pytorch) Dependencies argparse time torch torchvision numpy itertools matplotlib Create Datasets python create_datasets

Felipe Ducau 188 Jan 01, 2023
TrackTech: Real-time tracking of subjects and objects on multiple cameras

TrackTech: Real-time tracking of subjects and objects on multiple cameras This project is part of the 2021 spring bachelor final project of the Bachel

5 Jun 17, 2022
The codes and models in 'Gaze Estimation using Transformer'.

GazeTR We provide the code of GazeTR-Hybrid in "Gaze Estimation using Transformer". We recommend you to use data processing codes provided in GazeHub.

65 Dec 27, 2022
Code for Robust Contrastive Learning against Noisy Views

Robust Contrastive Learning against Noisy Views This repository provides a PyTorch implementation of the Robust InfoNCE loss proposed in paper Robust

Ching-Yao Chuang 53 Jan 08, 2023
A simple root calculater for python

Root A simple root calculater Usage/Examples python3 root.py 9 3 4 # Order: number - grid - number of decimals # Output: 2.08

Reza Hosseinzadeh 5 Feb 10, 2022
Official implementation of FCL-taco2: Fast, Controllable and Lightweight version of Tacotron2 @ ICASSP 2021

FCL-Taco2: Towards Fast, Controllable and Lightweight Text-to-Speech synthesis (ICASSP 2021) Paper | Demo Block diagram of FCL-taco2, where the decode

Disong Wang 39 Sep 28, 2022
Kalidokit is a blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models

Blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models.

Rich 4.5k Jan 07, 2023
2nd solution of ICDAR 2021 Competition on Scientific Literature Parsing, Task B.

TableMASTER-mmocr Contents About The Project Method Description Dependency Getting Started Prerequisites Installation Usage Data preprocess Train Infe

Jianquan Ye 298 Dec 21, 2022
Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment".

#backdoor-HSIC (bd_HSIC) Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment". To generate

Robert Hu 0 Nov 25, 2021
PyTorch implementation of Value Iteration Networks (VIN): Clean, Simple and Modular. Visualization in Visdom.

VIN: Value Iteration Networks This is an implementation of Value Iteration Networks (VIN) in PyTorch to reproduce the results.(TensorFlow version) Key

Xingdong Zuo 215 Dec 07, 2022