pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802

Overview

PyTorch SRResNet

Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs/1609.04802) in PyTorch

Usage

Training

usage: main_srresnet.py [-h] [--batchSize BATCHSIZE] [--nEpochs NEPOCHS]
                        [--lr LR] [--step STEP] [--cuda] [--resume RESUME]
                        [--start-epoch START_EPOCH] [--threads THREADS]
                        [--pretrained PRETRAINED] [--vgg_loss] [--gpus GPUS]

optional arguments:
  -h, --help            show this help message and exit
  --batchSize BATCHSIZE
                        training batch size
  --nEpochs NEPOCHS     number of epochs to train for
  --lr LR               Learning Rate. Default=1e-4
  --step STEP           Sets the learning rate to the initial LR decayed by
                        momentum every n epochs, Default: n=500
  --cuda                Use cuda?
  --resume RESUME       Path to checkpoint (default: none)
  --start-epoch START_EPOCH
                        Manual epoch number (useful on restarts)
  --threads THREADS     Number of threads for data loader to use, Default: 1
  --pretrained PRETRAINED
                        path to pretrained model (default: none)
  --vgg_loss            Use content loss?
  --gpus GPUS           gpu ids (default: 0)

An example of training usage is shown as follows:

python main_srresnet.py --cuda --vgg_loss --gpus 0

demo

usage: demo.py [-h] [--cuda] [--model MODEL] [--image IMAGE]
               [--dataset DATASET] [--scale SCALE] [--gpus GPUS]

optional arguments:
  -h, --help         show this help message and exit
  --cuda             use cuda?
  --model MODEL      model path
  --image IMAGE      image name
  --dataset DATASET  dataset name
  --scale SCALE      scale factor, Default: 4
  --gpus GPUS        gpu ids (default: 0)

We convert Set5 test set images to mat format using Matlab, for simple image reading An example of usage is shown as follows:

python demo.py --model model/model_srresnet.pth --dataset Set5 --image butterfly_GT --scale 4 --cuda

Eval

usage: eval.py [-h] [--cuda] [--model MODEL] [--dataset DATASET]
               [--scale SCALE] [--gpus GPUS]

optional arguments:
  -h, --help         show this help message and exit
  --cuda             use cuda?
  --model MODEL      model path
  --dataset DATASET  dataset name, Default: Set5
  --scale SCALE      scale factor, Default: 4
  --gpus GPUS        gpu ids (default: 0)

We convert Set5 test set images to mat format using Matlab. Since PSNR is evaluated on only Y channel, we import matlab in python, and use rgb2ycbcr function for converting rgb image to ycbcr image. You will have to setup the matlab python interface so as to import matlab library. An example of usage is shown as follows:

python eval.py --model model/model_srresnet.pth --dataset Set5 --cuda

Prepare Training dataset

  • Please refer Code for Data Generation for creating training files.
  • Data augmentations including flipping, rotation, downsizing are adopted.

Performance

  • We provide a pretrained model trained on 291 images with data augmentation
  • Instance Normalization is applied instead of Batch Normalization for better performance
  • So far performance in PSNR is not as good as paper, any suggestion is welcome
Dataset SRResNet Paper SRResNet PyTorch
Set5 32.05 31.80
Set14 28.49 28.25
BSD100 27.58 27.51

Result

From left to right are ground truth, bicubic and SRResNet

Owner
Jiu XU
Computer Vision Engineering Manager @ Apple
Jiu XU
From Perceptron model to Deep Neural Network from scratch in Python.

Neural-Network-Basics Aim of this Repository: From Perceptron model to Deep Neural Network (from scratch) in Python. ** Currently working on a basic N

Aditya Kahol 1 Jan 14, 2022
CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection

CLOCs is a novel Camera-LiDAR Object Candidates fusion network. It provides a low-complexity multi-modal fusion framework that improves the performance of single-modality detectors. CLOCs operates on

Su Pang 254 Dec 16, 2022
A machine learning package for streaming data in Python. The other ancestor of River.

scikit-multiflow is a machine learning package for streaming data in Python. creme and scikit-multiflow are merging into a new project called River. W

670 Dec 30, 2022
An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wheat Detection (2021).

Global-Wheat-Detection An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wh

Chuxin Wang 11 Sep 25, 2022
An essential implementation of BYOL in PyTorch + PyTorch Lightning

Essential BYOL A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Ligh

Enrico Fini 48 Sep 27, 2022
RNN Predict Street Commercial Vitality

RNN-for-Predicting-Street-Vitality Code and dataset for Predicting the Vitality of Stores along the Street based on Business Type Sequence via Recurre

Zidong LIU 1 Dec 15, 2021
Mind the Trade-off: Debiasing NLU Models without Degrading the In-distribution Performance

Models for natural language understanding (NLU) tasks often rely on the idiosyncratic biases of the dataset, which make them brittle against test cases outside the training distribution.

Ubiquitous Knowledge Processing Lab 22 Jan 02, 2023
A demonstration of using a live Tensorflow session to create an interactive face-GAN explorer.

Streamlit Demo: The Controllable GAN Face Generator This project highlights Streamlit's new hash_func feature with an app that calls on TensorFlow to

Streamlit 257 Dec 31, 2022
MERLOT: Multimodal Neural Script Knowledge Models

merlot MERLOT: Multimodal Neural Script Knowledge Models MERLOT is a model for learning what we are calling "neural script knowledge" -- representatio

Rowan Zellers 190 Dec 22, 2022
Clairvoyance: a Unified, End-to-End AutoML Pipeline for Medical Time Series

Clairvoyance: A Pipeline Toolkit for Medical Time Series Authors: van der Schaar Lab This repository contains implementations of Clairvoyance: A Pipel

van_der_Schaar \LAB 89 Dec 07, 2022
A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations.

IllustrationGAN A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations. Generated Images

268 Nov 27, 2022
Code for Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021)

Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021) Hang Zhou, Yasheng Sun, Wayne Wu, Chen Cha

Hang_Zhou 628 Dec 28, 2022
A SAT-based sudoku solver

SAT Sudoku solver A SAT-based Sudoku solver made in the context of a small project in the "Logic Problem Solving" class in the first year at the Polyt

Alexandre Malfreyt 5 Apr 15, 2022
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Shipeng Wang 34 Dec 21, 2022
PHOTONAI is a high level python API for designing and optimizing machine learning pipelines.

PHOTONAI is a high level python API for designing and optimizing machine learning pipelines. We've created a system in which you can easily select and

Medical Machine Learning Lab - University of Münster 57 Nov 12, 2022
Differentiable Annealed Importance Sampling (DAIS)

Differentiable Annealed Importance Sampling (DAIS) This repository contains the code to reproduce the DAIS results from the paper Differentiable Annea

Guodong Zhang 6 Dec 26, 2021
This repo contains the pytorch implementation for Dynamic Concept Learner (accepted by ICLR 2021).

DCL-PyTorch Pytorch implementation for the Dynamic Concept Learner (DCL). More details can be found at the project page. Framework Grounding Physical

Zhenfang Chen 31 Jan 06, 2023
Simple ray intersection library similar to coldet - succedeed by libacc

Ray Intersection This project offers a header only acceleration structure library including implementations for a BVH- and KD-Tree. Applications may i

Nils Moehrle 29 Jun 23, 2022
Implementation of "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing".

DeepOrder Implementation of DeepOrder for the paper "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing". Project

6 Nov 07, 2022
Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation

Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation The code repository for "Audio-Visual Generalized Few-Shot Learning with

Kaiaicy 3 Jun 27, 2022