Implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork.

Overview

YOLOv4-large

This is the implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork.

Model Test Size APtest AP50test AP75test APStest APMtest APLtest batch1 throughput
YOLOv4-P5 896 51.4% 69.9% 56.3% 33.1% 55.4% 62.4% 41 fps
YOLOv4-P5 TTA 52.5% 70.3% 58.0% 36.0% 52.4% 62.3% -
YOLOv4-P6 1280 54.3% 72.3% 59.5% 36.6% 58.2% 65.5% 30 fps
YOLOv4-P6 TTA 54.9% 72.6% 60.2% 37.4% 58.8% 66.7% -
YOLOv4-P7 1536 55.4% 73.3% 60.7% 38.1% 59.5% 67.4% 15 fps
YOLOv4-P7 TTA 55.8% 73.2% 61.2% 38.8% 60.1% 68.2% -
Model Test Size APval AP50val AP75val APSval APMval APLval weights
YOLOv4-P5 896 51.2% 69.8% 56.2% 35.0% 56.2% 64.0% yolov4-p5.pt
YOLOv4-P5 TTA 52.5% 70.2% 57.8% 38.5% 57.2% 64.0% -
YOLOv4-P5 (+BoF) 896 51.7% 70.3% 56.7% 35.9% 56.7% 64.3% yolov4-p5_.pt
YOLOv4-P5 (+BoF) TTA 52.8% 70.6% 58.3% 38.8% 57.4% 64.4% -
YOLOv4-P6 1280 53.9% 72.0% 59.0% 39.3% 58.3% 66.6% yolov4-p6.pt
YOLOv4-P6 TTA 54.4% 72.3% 59.6% 39.8% 58.9% 67.6% -
YOLOv4-P6 (+BoF) 1280 54.4% 72.7% 59.5% 39.5% 58.9% 67.3% yolov4-p6_.pt
YOLOv4-P6 (+BoF) TTA 54.8% 72.6% 60.0% 40.6% 59.1% 68.2% -
YOLOv4-P6 (+BoF*) 1280 54.7% 72.9% 60.0% 39.4% 59.2% 68.3%
YOLOv4-P6 (+BoF*) TTA 55.3% 73.2% 60.8% 40.5% 59.9% 69.4% -
YOLOv4-P7 1536 55.0% 72.9% 60.2% 39.8% 59.9% 68.4% yolov4-p7.pt
YOLOv4-P7 TTA 55.5% 72.9% 60.8% 41.1% 60.3% 68.9% -
Model Test Size APval AP50val AP75val APSval APMval APLval
YOLOv4-P6-attention 1280 54.3% 72.3% 59.6% 38.7% 58.9% 66.6%

Installation

# create the docker container, you can change the share memory size if you have more.
nvidia-docker run --name yolov4_csp -it -v your_coco_path/:/coco/ -v your_code_path/:/yolo --shm-size=64g nvcr.io/nvidia/pytorch:20.06-py3

# install mish-cuda, if you use different pytorch version, you could try https://github.com/thomasbrandon/mish-cuda
cd /
git clone https://github.com/JunnYu/mish-cuda
cd mish-cuda
python setup.py build install

# go to code folder
cd /yolo

Testing

# download {yolov4-p5.pt, yolov4-p6.pt, yolov4-p7.pt} and put them in /yolo/weights/ folder.
python test.py --img 896 --conf 0.001 --batch 8 --device 0 --data coco.yaml --weights weights/yolov4-p5.pt
python test.py --img 1280 --conf 0.001 --batch 8 --device 0 --data coco.yaml --weights weights/yolov4-p6.pt
python test.py --img 1536 --conf 0.001 --batch 8 --device 0 --data coco.yaml --weights weights/yolov4-p7.pt

You will get following results:

# yolov4-p5
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.51244
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.69771
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.56180
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.35021
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.56247
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.63983
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.38530
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.64048
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.69801
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.55487
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.74368
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.82826
# yolov4-p6
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.53857
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.72015
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.59025
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.39285
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.58283
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.66580
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.39552
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.66504
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.72141
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.59193
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.75844
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.83981
# yolov4-p7
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.55046
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.72925
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.60224
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.39836
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.59854
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.68405
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.40256
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.66929
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.72943
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.59943
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.76873
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.84460

Training

We use multiple GPUs for training. {YOLOv4-P5, YOLOv4-P6, YOLOv4-P7} use input resolution {896, 1280, 1536} for training respectively.

# yolov4-p5
python -m torch.distributed.launch --nproc_per_node 4 train.py --batch-size 64 --img 896 896 --data coco.yaml --cfg yolov4-p5.yaml --weights '' --sync-bn --device 0,1,2,3 --name yolov4-p5
python -m torch.distributed.launch --nproc_per_node 4 train.py --batch-size 64 --img 896 896 --data coco.yaml --cfg yolov4-p5.yaml --weights 'runs/exp0_yolov4-p5/weights/last_298.pt' --sync-bn --device 0,1,2,3 --name yolov4-p5-tune --hyp 'data/hyp.finetune.yaml' --epochs 450 --resume

If your training process stucks, it due to bugs of the python. Just Ctrl+C to stop training and resume training by:

# yolov4-p5
python -m torch.distributed.launch --nproc_per_node 4 train.py --batch-size 64 --img 896 896 --data coco.yaml --cfg yolov4-p5.yaml --weights 'runs/exp0_yolov4-p5/weights/last.pt' --sync-bn --device 0,1,2,3 --name yolov4-p5 --resume

Citation

@InProceedings{Wang_2021_CVPR,
    author    = {Wang, Chien-Yao and Bochkovskiy, Alexey and Liao, Hong-Yuan Mark},
    title     = {{Scaled-YOLOv4}: Scaling Cross Stage Partial Network},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {13029-13038}
}

Acknowledgements

Expand
Owner
Kin-Yiu, Wong
Kin-Yiu, Wong
Official MegEngine implementation of CREStereo(CVPR 2022 Oral).

[CVPR 2022] Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation This repository contains MegEngine implementation of ou

MEGVII Research 309 Dec 30, 2022
Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021)

Pano-AVQA Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021) [Paper] [Poster] [Video] Getting Starte

Heeseung Yun 9 Dec 23, 2022
Classifying cat and dog images using Kaggle dataset

PyTorch Image Classification Classifies an image as containing either a dog or a cat (using Kaggle's public dataset), but could easily be extended to

Robert Coleman 74 Nov 22, 2022
Geometric Vector Perceptrons --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Implementation of equivariant GVP-GNNs as described in Learning from Protein Structure with Geometric Vector Perceptrons b

Dror Lab 142 Dec 29, 2022
[ECCV'20] Convolutional Occupancy Networks

Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page | Blog Post This repository contains the implementation o

622 Dec 30, 2022
code for ICCV 2021 paper 'Generalized Source-free Domain Adaptation'

G-SFDA Code (based on pytorch 1.3) for our ICCV 2021 paper 'Generalized Source-free Domain Adaptation'. [project] [paper]. Dataset preparing Download

Shiqi Yang 84 Dec 26, 2022
Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Peter Schaldenbrand 247 Dec 23, 2022
Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning

advantage-weighted-regression Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning, by Peng et al. (

Omar D. Domingues 1 Dec 02, 2021
In this project, we develop a face recognize platform based on MTCNN object-detection netcwork and FaceNet self-supervised network.

模式识别大作业——人脸检测与识别平台 本项目是一个简易的人脸检测识别平台,提供了人脸信息录入和人脸识别的功能。前端采用 html+css+js,后端采用 pytorch,

Xuhua Huang 5 Aug 02, 2022
pytorch implementation of dftd2 & dftd3

torch-dftd pytorch implementation of dftd2 [1] & dftd3 [2, 3] Install # Install from pypi pip install torch-dftd # Install from source (for developer

33 Nov 28, 2022
Exploration & Research into cross-domain MEV. Initial focus on ETH/POLYGON.

xMEV, an apt exploration This is a small exploration on the xMEV opportunities between Polygon and Ethereum. It's a data analysis exercise on a few pa

odyslam.eth 7 Oct 18, 2022
CR-Fill: Generative Image Inpainting with Auxiliary Contextual Reconstruction. ICCV 2021

crfill Usage | Web App | | Paper | Supplementary Material | More results | code for paper ``CR-Fill: Generative Image Inpainting with Auxiliary Contex

182 Dec 20, 2022
UMT is a unified and flexible framework which can handle different input modality combinations, and output video moment retrieval and/or highlight detection results.

Unified Multi-modal Transformers This repository maintains the official implementation of the paper UMT: Unified Multi-modal Transformers for Joint Vi

Applied Research Center (ARC), Tencent PCG 84 Jan 04, 2023
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch

Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo

Gabriele Corso 56 Dec 23, 2022
Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020)

GraspNet Baseline Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020). [paper] [dataset] [API] [do

GraspNet 209 Dec 29, 2022
For storing the complete exploration of Visual Question Answering for our B.Tech Project

Multi-Image vqa @authors: Akhilesh, Janhavi, Harsh Paper summary, Ideas tried and their corresponding results: on wiki Other discussions: on discussio

Harsh Raj 3 Jun 16, 2022
Diagnostic tests for linguistic capacities in language models

LM diagnostics This repository contains the diagnostic datasets and experimental code for What BERT is not: Lessons from a new suite of psycholinguist

61 Jan 02, 2023
A SAT-based sudoku solver

SAT Sudoku solver A SAT-based Sudoku solver made in the context of a small project in the "Logic Problem Solving" class in the first year at the Polyt

Alexandre Malfreyt 5 Apr 15, 2022
PyTorch implementation of SIFT descriptor

This is an differentiable pytorch implementation of SIFT patch descriptor. It is very slow for describing one patch, but quite fast for batch. It can

Dmytro Mishkin 150 Dec 24, 2022
Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)

N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Gra

32 Dec 26, 2022