Implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork.

Overview

YOLOv4-large

This is the implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork.

Model Test Size APtest AP50test AP75test APStest APMtest APLtest batch1 throughput
YOLOv4-P5 896 51.4% 69.9% 56.3% 33.1% 55.4% 62.4% 41 fps
YOLOv4-P5 TTA 52.5% 70.3% 58.0% 36.0% 52.4% 62.3% -
YOLOv4-P6 1280 54.3% 72.3% 59.5% 36.6% 58.2% 65.5% 30 fps
YOLOv4-P6 TTA 54.9% 72.6% 60.2% 37.4% 58.8% 66.7% -
YOLOv4-P7 1536 55.4% 73.3% 60.7% 38.1% 59.5% 67.4% 15 fps
YOLOv4-P7 TTA 55.8% 73.2% 61.2% 38.8% 60.1% 68.2% -
Model Test Size APval AP50val AP75val APSval APMval APLval weights
YOLOv4-P5 896 51.2% 69.8% 56.2% 35.0% 56.2% 64.0% yolov4-p5.pt
YOLOv4-P5 TTA 52.5% 70.2% 57.8% 38.5% 57.2% 64.0% -
YOLOv4-P5 (+BoF) 896 51.7% 70.3% 56.7% 35.9% 56.7% 64.3% yolov4-p5_.pt
YOLOv4-P5 (+BoF) TTA 52.8% 70.6% 58.3% 38.8% 57.4% 64.4% -
YOLOv4-P6 1280 53.9% 72.0% 59.0% 39.3% 58.3% 66.6% yolov4-p6.pt
YOLOv4-P6 TTA 54.4% 72.3% 59.6% 39.8% 58.9% 67.6% -
YOLOv4-P6 (+BoF) 1280 54.4% 72.7% 59.5% 39.5% 58.9% 67.3% yolov4-p6_.pt
YOLOv4-P6 (+BoF) TTA 54.8% 72.6% 60.0% 40.6% 59.1% 68.2% -
YOLOv4-P6 (+BoF*) 1280 54.7% 72.9% 60.0% 39.4% 59.2% 68.3%
YOLOv4-P6 (+BoF*) TTA 55.3% 73.2% 60.8% 40.5% 59.9% 69.4% -
YOLOv4-P7 1536 55.0% 72.9% 60.2% 39.8% 59.9% 68.4% yolov4-p7.pt
YOLOv4-P7 TTA 55.5% 72.9% 60.8% 41.1% 60.3% 68.9% -
Model Test Size APval AP50val AP75val APSval APMval APLval
YOLOv4-P6-attention 1280 54.3% 72.3% 59.6% 38.7% 58.9% 66.6%

Installation

# create the docker container, you can change the share memory size if you have more.
nvidia-docker run --name yolov4_csp -it -v your_coco_path/:/coco/ -v your_code_path/:/yolo --shm-size=64g nvcr.io/nvidia/pytorch:20.06-py3

# install mish-cuda, if you use different pytorch version, you could try https://github.com/thomasbrandon/mish-cuda
cd /
git clone https://github.com/JunnYu/mish-cuda
cd mish-cuda
python setup.py build install

# go to code folder
cd /yolo

Testing

# download {yolov4-p5.pt, yolov4-p6.pt, yolov4-p7.pt} and put them in /yolo/weights/ folder.
python test.py --img 896 --conf 0.001 --batch 8 --device 0 --data coco.yaml --weights weights/yolov4-p5.pt
python test.py --img 1280 --conf 0.001 --batch 8 --device 0 --data coco.yaml --weights weights/yolov4-p6.pt
python test.py --img 1536 --conf 0.001 --batch 8 --device 0 --data coco.yaml --weights weights/yolov4-p7.pt

You will get following results:

# yolov4-p5
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.51244
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.69771
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.56180
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.35021
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.56247
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.63983
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.38530
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.64048
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.69801
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.55487
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.74368
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.82826
# yolov4-p6
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.53857
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.72015
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.59025
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.39285
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.58283
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.66580
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.39552
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.66504
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.72141
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.59193
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.75844
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.83981
# yolov4-p7
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.55046
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.72925
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.60224
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.39836
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.59854
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.68405
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.40256
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.66929
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.72943
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.59943
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.76873
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.84460

Training

We use multiple GPUs for training. {YOLOv4-P5, YOLOv4-P6, YOLOv4-P7} use input resolution {896, 1280, 1536} for training respectively.

# yolov4-p5
python -m torch.distributed.launch --nproc_per_node 4 train.py --batch-size 64 --img 896 896 --data coco.yaml --cfg yolov4-p5.yaml --weights '' --sync-bn --device 0,1,2,3 --name yolov4-p5
python -m torch.distributed.launch --nproc_per_node 4 train.py --batch-size 64 --img 896 896 --data coco.yaml --cfg yolov4-p5.yaml --weights 'runs/exp0_yolov4-p5/weights/last_298.pt' --sync-bn --device 0,1,2,3 --name yolov4-p5-tune --hyp 'data/hyp.finetune.yaml' --epochs 450 --resume

If your training process stucks, it due to bugs of the python. Just Ctrl+C to stop training and resume training by:

# yolov4-p5
python -m torch.distributed.launch --nproc_per_node 4 train.py --batch-size 64 --img 896 896 --data coco.yaml --cfg yolov4-p5.yaml --weights 'runs/exp0_yolov4-p5/weights/last.pt' --sync-bn --device 0,1,2,3 --name yolov4-p5 --resume

Citation

@InProceedings{Wang_2021_CVPR,
    author    = {Wang, Chien-Yao and Bochkovskiy, Alexey and Liao, Hong-Yuan Mark},
    title     = {{Scaled-YOLOv4}: Scaling Cross Stage Partial Network},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {13029-13038}
}

Acknowledgements

Expand
Owner
Kin-Yiu, Wong
Kin-Yiu, Wong
GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration

GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration Stefan Abi-Karam*, Yuqi He*, Rishov Sarkar*, Lakshmi Sathidevi, Zihang Qiao, Co

Sharc-Lab 19 Dec 15, 2022
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

250 Jan 08, 2023
TransMVSNet: Global Context-aware Multi-view Stereo Network with Transformers.

TransMVSNet This repository contains the official implementation of the paper: "TransMVSNet: Global Context-aware Multi-view Stereo Network with Trans

旷视研究院 3D 组 155 Dec 29, 2022
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
[peer review] An Arbitrary Scale Super-Resolution Approach for 3D MR Images using Implicit Neural Representation

ArSSR This repository is the pytorch implementation of our manuscript "An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic Resonan

Qing Wu 19 Dec 12, 2022
QuadTree Attention for Vision Transformers (ICLR2022)

This repository contains codes for quadtree attention. This repo contains codes for feature matching, image classficiation, object detection and seman

tangshitao 222 Dec 28, 2022
Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization

Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization This repository contains the code for the BBI optimizer, introduced in the p

G. Bruno De Luca 5 Sep 06, 2022
Streamlit App For Product Analysis - Streamlit App For Product Analysis

Streamlit_App_For_Product_Analysis Здравствуйте! Перед вами дашборд, позволяющий

Grigory Sirotkin 1 Jan 10, 2022
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 06, 2023
5 Jan 05, 2023
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
Pytorch implementation of our paper under review -- 1xN Pattern for Pruning Convolutional Neural Networks

1xN Pattern for Pruning Convolutional Neural Networks (paper) . This is Pytorch re-implementation of "1xN Pattern for Pruning Convolutional Neural Net

Mingbao Lin (林明宝) 29 Nov 29, 2022
Asymmetric metric learning for knowledge transfer

Asymmetric metric learning This is the official code that enables the reproduction of the results from our paper: Asymmetric metric learning for knowl

20 Dec 06, 2022
Interpolation-based reduced-order models

Interpolation-reduced-order-models Interpolation-based reduced-order models High-fidelity computational fluid dynamics (CFD) solutions are time consum

Donovan Blais 1 Jan 10, 2022
Python program that works as a contact list

Lista de Contatos Programa em Python que funciona como uma lista de contatos. Features Adicionar novo contato Remover contato Atualizar contato Pesqui

Victor B. Lino 3 Dec 16, 2021
Unofficial implementation of the Involution operation from CVPR 2021

involution_pytorch Unofficial PyTorch implementation of "Involution: Inverting the Inherence of Convolution for Visual Recognition" by Li et al. prese

Rishabh Anand 46 Dec 07, 2022
Bayes-Newton—A Gaussian process library in JAX, with a unifying view of approximate Bayesian inference as variants of Newton's algorithm.

Bayes-Newton Bayes-Newton is a library for approximate inference in Gaussian processes (GPs) in JAX (with objax), built and actively maintained by Wil

AaltoML 165 Nov 27, 2022
Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIM) Jiaming Song, Chenlin Meng and Stefano Ermon, Stanford Implements sampling from an implicit model that is t

465 Jan 05, 2023
[CVPR 2022] Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels

Using Unreliable Pseudo Labels Official PyTorch implementation of Semi-Supervised Semantic Segmentation Using Unreliable Pseudo Labels, CVPR 2022. Ple

Haochen Wang 268 Dec 24, 2022
Tensorflow 2 implementation of the paper: Learning and Evaluating Representations for Deep One-class Classification published at ICLR 2021

Deep Representation One-class Classification (DROC). This is not an officially supported Google product. Tensorflow 2 implementation of the paper: Lea

Google Research 137 Dec 23, 2022