2021 Artificial Intelligence Diabetes Datathon

Related tags

Deep LearningAIDD2021
Overview

A I D D 2021 최종 포스터

A.I.D.D. 2021

2021 Artificial Intelligence Diabetes Datathon

A.I.D.D. 2021은 ‘2021 인공지능 학습용 데이터 구축사업’을 통해 만들어진 학습용 데이터를 활용하여 당뇨병을 효과적으로 예측할 수 있는가에 대한 AI 모델링 챌린지입니다.

본 대회는 NAVER CLOUD PLATFORM의 고성능 클라우드 인프라 상에서 운영되며 네이버의 클라우드 머신러닝 플랫폼인 NSML(Naver Smart Machine Learning)과 함께 합니다. NAVER CLOUD PLATFORMNSML은 개발자들이 "모델 개발과 알고리즘 최적화"에만 집중할 수 있도록 필요한 제반 환경을 제공합니다. AI 전문가들과 함께 인공지능 모델 개발에 도전하실 분들을 기다리고 있습니다.

챌린지

당뇨병 데이터를 이용하여 당뇨병 발생을 예측하는 인공지능 모델 개발

  1. 예선
  • 당뇨병 발생 예측 인공지능 모델 개발
  1. 본선
  • 당뇨병 발생 예측 인공지능 모델 고도화!

시상 및 혜택

  • 총상금: 추후 공개
구분 시상 상금
대상 (1팀)
경희의료원장상 500만원
최우수상 (1팀)
경희의과학연구원장상 300만원
우수상 (2팀)
인공지능빅데이터팀장상 100만원

대회 일정

행사내용 일정 장소/방식
참가 신청
2021년 10월 22일 ~ 11월 16일 온라인
개회식 및 설명회
2021년 11월 18일 14:00~ 온라인
예선 대회
2021년 11월 19일 ~ 11월 22일 온라인(NSML)
본선 대회
2021년 11월 26일 ~ 11월 29일 온라인(NSML)

심사기준

  • 서면평가: 참가신청서, 참가팀 역량 (예선 진출팀 40개 팀 선발)
  • 예선: NSML 리더보드 상위 점수 순으로 선발 (본선 진출 20개 팀 선발)
  • 본선: 종료 시점 NSML 리더보드 상위 점수 순으로 시상
    *모델 사이즈 제한 300MB
    *동점자 발생 시 모델 제출 시간이 빠른 순서, 모델 크기가 작은 순서 순으로 우선순위 결정

참가신청

  1. 신청 기간: 2021년 10월 22일 ~ 11월 16일
  2. 신청 방법: 온라인

Github 게시판

  • 온라인 게시판 대회기간 중 10:00~19:00 실시간 운영
Cache Requests in Deta Bases and Echo them with Deta Micros

Deta Echo Cache Leverage the awesome Deta Micros and Deta Base to cache requests and echo them as needed. Stop worrying about slow public APIs or agre

Gingerbreadfork 8 Dec 07, 2021
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Shipeng Wang 34 Dec 21, 2022
Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies.

Crypto_Bot Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies. Steps to get started using the bot: Sign up

21 Oct 03, 2022
Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model

Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model Baris Gecer 1, Binod Bhattarai 1

Baris Gecer 190 Dec 29, 2022
COVID-Net Open Source Initiative

The COVID-Net models provided here are intended to be used as reference models that can be built upon and enhanced as new data becomes available

Linda Wang 1.1k Dec 26, 2022
Adversarial Color Enhancement: Generating Unrestricted Adversarial Images by Optimizing a Color Filter

ACE Please find the preliminary version published at BMVC 2020 in the folder BMVC_version, and its extended journal version in Journal_version. Datase

28 Dec 25, 2022
[CVPR'21] DeepSurfels: Learning Online Appearance Fusion

DeepSurfels: Learning Online Appearance Fusion Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission DeepSurfel

Online Reconstruction 52 Nov 14, 2022
Code to replicate the key results from Exploring the Limits of Out-of-Distribution Detection

Exploring the Limits of Out-of-Distribution Detection In this repository we're collecting replications for the key experiments in the Exploring the Li

Stanislav Fort 35 Jan 03, 2023
Mesh Graphormer is a new transformer-based method for human pose and mesh reconsruction from an input image

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
PyTorch implementation of SIFT descriptor

This is an differentiable pytorch implementation of SIFT patch descriptor. It is very slow for describing one patch, but quite fast for batch. It can

Dmytro Mishkin 150 Dec 24, 2022
GAN-based 3D human pose estimation model for 3DV'17 paper

Tensorflow implementation for 3DV 2017 conference paper "Adversarially Parameterized Optimization for 3D Human Pose Estimation". @inproceedings{jack20

Dominic Jack 15 Feb 27, 2021
A package to predict protein inter-residue geometries from sequence data

trRosetta This package is a part of trRosetta protein structure prediction protocol developed in: Improved protein structure prediction using predicte

Ivan Anishchenko 185 Jan 07, 2023
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
A web application that provides real time temperature and humidity readings of a house.

About A web application which provides real time temperature and humidity readings of a house. If you're interested in the data collected so far click

Ben Thompson 3 Jan 28, 2022
PyTorch implementation of Value Iteration Networks (VIN): Clean, Simple and Modular. Visualization in Visdom.

VIN: Value Iteration Networks This is an implementation of Value Iteration Networks (VIN) in PyTorch to reproduce the results.(TensorFlow version) Key

Xingdong Zuo 215 Dec 07, 2022
Measuring Coding Challenge Competence With APPS

Measuring Coding Challenge Competence With APPS This is the repository for Measuring Coding Challenge Competence With APPS by Dan Hendrycks*, Steven B

Dan Hendrycks 218 Dec 27, 2022
WTTE-RNN a framework for churn and time to event prediction

WTTE-RNN Weibull Time To Event Recurrent Neural Network A less hacky machine-learning framework for churn- and time to event prediction. Forecasting p

Egil Martinsson 727 Dec 28, 2022
Annotated notes and summaries of the TensorFlow white paper, along with SVG figures and links to documentation

TensorFlow White Paper Notes Features Notes broken down section by section, as well as subsection by subsection Relevant links to documentation, resou

Sam Abrahams 437 Oct 09, 2022
Source code for CAST - Crisis Domain Adaptation Using Sequence-to-sequence Transformers (Accepted to ISCRAM 2021, CorePaper).

Source code for CAST: Crisis Domain Adaptation UsingSequence-to-sequenceTransformers (Paper, BibTeX, Accepted to ISCRAM 2021, CorePaper) Quick start D

Congcong Wang 0 Jul 14, 2021