COVID-Net Open Source Initiative

Overview

COVID-Net Open Source Initiative

Note: The COVID-Net models provided here are intended to be used as reference models that can be built upon and enhanced as new data becomes available. They are currently at a research stage and not yet intended as production-ready models (not meant for direct clinical diagnosis), and we are working continuously to improve them as new data becomes available. Please do not use COVID-Net for self-diagnosis and seek help from your local health authorities.

Recording to webinar on How we built COVID-Net in 7 days with Gensynth

Update 04/21/2021: We released a new COVIDNet CXR-S model and COVIDxSev dataset for airspace severity grading in COVID-19 positive patient CXR images. For more information on training, testing and inference please refer to severity docs.
Update 03/20/2021: We released a new COVID-Net CXR-2 model for COVID-19 positive/negative detection which was trained on the new COVIDx8B dataset with 16,352 CXR images from a multinational cohort of 15,346 patients from at least 51 countries. The test results are based on the new COVIDx8B test set of 200 COVID-19 positive and 200 negative CXR images.
Update 03/19/2021: We released updated datasets and dataset curation scripts. The COVIDx V8A dataset and create_COVIDx.ipynb are for detection of no pneumonia/non-COVID-19 pneumonia/COVID-19 pneumonia, and COVIDx V8B dataset and create_COVIDx_binary.ipynb are for COVID-19 positive/negative detection. Both datasets contain over 16000 CXR images with over 2300 positive COVID-19 images.
Update 01/28/2021: We released updated datasets and dataset curation scripts. The COVIDx V7A dataset and create_COVIDx.ipynb are for detection of no pneumonia/non-COVID-19 pneumonia/COVID-19 pneumonia, and COVIDx V7B dataset and create_COVIDx_binary.ipynb are for COVID-19 positive/negative detection. Both datasets contain over 15600 CXR images with over 1700 positive COVID-19 images.
Update 01/05/2021: We released a new COVIDx6 dataset for binary classification (COVID-19 positive or COVID-19 negative) with over 14500 CXR images and 617 positive COVID-19 images.
Update 11/24/2020: We released CancerNet-SCa for skin cancer detection, part of the CancerNet initiatives.
Update 11/15/2020: We released COVIDNet-P inference and evaluation scripts for identifying pneumonia in CXR images using the COVIDx5 dataset. For more information please refer to this doc.
Update 10/30/2020: We released a new COVIDx5 dataset with over 14200 CXR images and 617 positive COVID-19 images.
Update 09/11/2020: We released updated COVIDNet-S models for geographic and opacity extent scoring of SARS-CoV-2 lung severity and updated the inference script for an opacity extent scoring ranging from 0-8.
Update 07/08/2020: We released COVIDNet-CT, which was trained and tested on 104,009 CT images from 1,489 patients. For more information, as well as instructions to run and download the models, refer to this repo.
Update 06/26/2020: We released 3 new models, COVIDNet-CXR4-A, COVIDNet-CXR4-B, COVIDNet-CXR4-C, which were trained on the new COVIDx4 dataset with over 14000 CXR images and 473 positive COVID-19 images for training. The test results are based on the same test dataset as COVIDNet-CXR3 models.
Update 06/01/2020: We released an inference script and the models for geographic and opacity extent scoring of SARS-CoV-2 lung severity.
Update 05/26/2020: For a detailed description of the methodology behind COVID-Net based deep neural networks for geographic extent and opacity extent scoring of chest X-rays for SARS-CoV-2 lung disease severity, see the paper here.
Update 05/13/2020: We released 3 new models, COVIDNet-CXR3-A, COVIDNet-CXR3-B, COVIDNet-CXR3-C, which were trained on a new COVIDx dataset with both PA and AP X-Rays. The results are now based on a test set containing 100 COVID-19 samples.
Update 04/16/2020: If you have questions, please check the new FAQ page first.

photo not available
COVID-Net CXR-2 for COVID-19 positive/negative detection architecture and example chest radiography images of COVID-19 cases from 2 different patients and their associated critical factors (highlighted in red) as identified by GSInquire.

The COVID-19 pandemic continues to have a devastating effect on the health and well-being of the global population. A critical step in the fight against COVID-19 is effective screening of infected patients, with one of the key screening approaches being radiology examination using chest radiography. It was found in early studies that patients present abnormalities in chest radiography images that are characteristic of those infected with COVID-19. Motivated by this and inspired by the open source efforts of the research community, in this study we introduce COVID-Net, a deep convolutional neural network design tailored for the detection of COVID-19 cases from chest X-ray (CXR) images that is open source and available to the general public. To the best of the authors' knowledge, COVID-Net is one of the first open source network designs for COVID-19 detection from CXR images at the time of initial release. We also introduce COVIDx, an open access benchmark dataset that we generated comprising of 13,975 CXR images across 13,870 patient patient cases, with the largest number of publicly available COVID-19 positive cases to the best of the authors' knowledge. Furthermore, we investigate how COVID-Net makes predictions using an explainability method in an attempt to not only gain deeper insights into critical factors associated with COVID cases, which can aid clinicians in improved screening, but also audit COVID-Net in a responsible and transparent manner to validate that it is making decisions based on relevant information from the CXR images. By no means a production-ready solution, the hope is that the open access COVID-Net, along with the description on constructing the open source COVIDx dataset, will be leveraged and build upon by both researchers and citizen data scientists alike to accelerate the development of highly accurate yet practical deep learning solutions for detecting COVID-19 cases and accelerate treatment of those who need it the most.

For a detailed description of the methodology behind COVID-Net and a full description of the COVIDx dataset, please click here.

For a detailed description of the methodology behind COVID-Net based deep neural networks for geographic extent and opacity extent scoring of chest X-rays for SARS-CoV-2 lung disease severity, please click here.

For a detailed description of the methodology behind COVIDNet-CT and the associated dataset of 104,009 CT images from 1,489 patients, please click here.

Currently, the COVID-Net team is working on COVID-RiskNet, a deep neural network tailored for COVID-19 risk stratification. Currently this is available as a work-in-progress via included train_risknet.py script, help to contribute data and we can improve this tool.

If you would like to contribute COVID-19 x-ray images, please submit to https://figure1.typeform.com/to/lLrHwv. Lets all work together to stop the spread of COVID-19!

If you are a researcher or healthcare worker and you would like access to the GSInquire tool to use to interpret COVID-Net results on your data or existing data, please reach out to [email protected] or [email protected]

Our desire is to encourage broad adoption and contribution to this project. Accordingly this project has been licensed under the GNU Affero General Public License 3.0. Please see license file for terms. If you would like to discuss alternative licensing models, please reach out to us at [email protected] and [email protected] or [email protected]

If there are any technical questions after the README, FAQ, and past/current issues have been read, please post an issue or contact:

If you find our work useful, can cite our paper using:

@Article{Wang2020,
	author={Wang, Linda and Lin, Zhong Qiu and Wong, Alexander},
	title={COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images},
	journal={Scientific Reports},
	year={2020},
	month={Nov},
	day={11},
	volume={10},
	number={1},
	pages={19549},
	issn={2045-2322},
	doi={10.1038/s41598-020-76550-z},
	url={https://doi.org/10.1038/s41598-020-76550-z}
}

Quick Links

  1. COVIDNet-CXR models (COVID-19 detection using chest x-rays): https://github.com/lindawangg/COVID-Net/blob/master/docs/models.md
  2. COVIDNet-CT models (COVID-19 detection using chest CT scans): https://github.com/haydengunraj/COVIDNet-CT/blob/master/docs/models.md
  3. COVIDNet-CXR-S models (COVID-19 airspace severity grading using chest x-rays): https://github.com/lindawangg/COVID-Net/blob/master/docs/models.md
  4. COVIDNet-S models (COVID-19 lung severity assessment using chest x-rays): https://github.com/lindawangg/COVID-Net/blob/master/docs/models.md
  5. COVIDx-CXR dataset: https://github.com/lindawangg/COVID-Net/blob/master/docs/COVIDx.md
  6. COVIDx-CT dataset: https://github.com/haydengunraj/COVIDNet-CT/blob/master/docs/dataset.md
  7. COVIDx-S dataset: https://github.com/lindawangg/COVID-Net/tree/master/annotations
  8. COVIDNet-P inference for pneumonia: https://github.com/lindawangg/COVID-Net/blob/master/docs/covidnet_pneumonia.md
  9. CancerNet-SCa models for skin cancer detection: https://github.com/jamesrenhoulee/CancerNet-SCa/blob/main/docs/models.md

Training, inference, and evaluation scripts for COVIDNet-CXR, COVIDNet-CT, COVIDNet-S, and CancerNet-SCa models are available at the respective repos

Core COVID-Net Team

  • DarwinAI Corp., Canada and Vision and Image Processing Research Group, University of Waterloo, Canada
  • Vision and Image Processing Research Group, University of Waterloo, Canada
    • James Lee
    • Hossein Aboutalebi
    • Alex MacLean
    • Saad Abbasi
  • Ashkan Ebadi and Pengcheng Xi (National Research Council Canada)
  • Kim-Ann Git (Selayang Hospital)
  • Abdul Al-Haimi, COVID-19 ShuffleNet Chest X-Ray Model: https://github.com/aalhaimi/covid-net-cxr-shuffle

Table of Contents

  1. Requirements to install on your system
  2. How to generate COVIDx dataset
  3. Steps for training, evaluation and inference of COVIDNet
  4. Steps for inference of COVIDNet lung severity scoring
  5. Results
  6. Links to pretrained models

Requirements

The main requirements are listed below:

  • Tested with Tensorflow 1.13 and 1.15
  • OpenCV 4.2.0
  • Python 3.6
  • Numpy
  • Scikit-Learn
  • Matplotlib

Additional requirements to generate dataset:

  • PyDicom
  • Pandas
  • Jupyter

Results

These are the final results for the COVIDNet models.

COVIDNet-CXR-2 on COVIDx8B (200 COVID-19 test)

Sensitivity (%)
Negative Positive
97.0 95.5
Positive Predictive Value (%)
Negative Positive
95.6 97.0

COVIDNet-CXR4-A on COVIDx4 (100 COVID-19 test)

Sensitivity (%)
Normal Pneumonia COVID-19
94.0 94.0 95.0
Positive Predictive Value (%)
Normal Pneumonia COVID-19
91.3 93.1 99.0

COVIDNet-CXR4-B on COVIDx4 (100 COVID-19 test)

Sensitivity (%)
Normal Pneumonia COVID-19
96.0 92.0 93.0
Positive Predictive Value (%)
Normal Pneumonia COVID-19
88.9 93.9 98.9

COVIDNet-CXR4-C on COVIDx4 (100 COVID-19 test)

Sensitivity (%)
Normal Pneumonia COVID-19
95.0 89.0 96.0
Positive Predictive Value (%)
Normal Pneumonia COVID-19
90.5 93.7 96.0

COVIDNet-CXR3-A on COVIDx3 (100 COVID-19 test)

Sensitivity (%)
Normal Pneumonia COVID-19
93.0 93.0 94.0
Positive Predictive Value (%)
Normal Pneumonia COVID-19
92.1 90.3 97.9

COVIDNet-CXR3-B on COVIDx3 (100 COVID-19 test)

Sensitivity (%)
Normal Pneumonia COVID-19
95.0 94.0 91.0
Positive Predictive Value (%)
Normal Pneumonia COVID-19
90.5 91.3 98.9

COVIDNet-CXR3-C on COVIDx3 (100 COVID-19 test)

Sensitivity (%)
Normal Pneumonia COVID-19
92.0 90.0 95.0
Positive Predictive Value (%)
Normal Pneumonia COVID-19
90.2 91.8 95.0

COVIDNet-CXR Small on COVIDx2 (31 COVID-19 test)

Sensitivity (%)
Normal Pneumonia COVID-19
97.0 90.0 87.1
Positive Predictive Value (%)
Normal Pneumonia COVID-19
89.8 94.7 96.4

COVIDNet-CXR Large on COVIDx2 (31 COVID-19 test)

Sensitivity (%)
Normal Pneumonia COVID-19
99.0 89.0 96.8
Positive Predictive Value (%)
Normal Pneumonia COVID-19
91.7 98.9 90.9
Owner
Linda Wang
Computer Vision 📸, Self-Driving 🚘, Medical Image Analysis ⚕️
Linda Wang
The implementation of the CVPR2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes"

STAR-FC This code is the implementation for the CVPR 2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes" 🌟 🌟 . 🎓 Re

Shuai Shen 87 Dec 28, 2022
A Tensorflow implementation of BicycleGAN.

BicycleGAN implementation in Tensorflow As part of the implementation series of Joseph Lim's group at USC, our motivation is to accelerate (or sometim

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 97 Dec 02, 2022
Modular Gaussian Processes

Modular Gaussian Processes for Transfer Learning 🧩 Introduction This repository contains the implementation of our paper Modular Gaussian Processes f

Pablo Moreno-Muñoz 10 Mar 15, 2022
Code for reproducing experiments in "Improved Training of Wasserstein GANs"

Improved Training of Wasserstein GANs Code for reproducing experiments in "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, Tensor

Ishaan Gulrajani 2.2k Jan 01, 2023
PyTorch Implement of Context Encoders: Feature Learning by Inpainting

Context Encoders: Feature Learning by Inpainting This is the Pytorch implement of CVPR 2016 paper on Context Encoders 1) Semantic Inpainting Demo Inst

321 Dec 25, 2022
[SIGGRAPH'22] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets

[Project] [PDF] This repository contains code for our SIGGRAPH'22 paper "StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets" by Axel Sauer, Katja

742 Jan 04, 2023
[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight) Demo | Paper [NEW!] Time to play with our interac

Shengyu Zhao 373 Jan 02, 2023
Internship Assessment Task for BaggageAI.

BaggageAI Internship Task Problem Statement: You are given two sets of images:- background and threat objects. Background images are the background x-

Arya Shah 10 Nov 14, 2022
3D ResNets for Action Recognition (CVPR 2018)

3D ResNets for Action Recognition Update (2020/4/13) We published a paper on arXiv. Hirokatsu Kataoka, Tenga Wakamiya, Kensho Hara, and Yutaka Satoh,

Kensho Hara 3.5k Jan 06, 2023
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be

Ziniu Hu 346 Dec 19, 2022
Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC)

ppg-vc Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC) This repo implements different kinds of PPG-based VC models. Pretrained models. More m

Liu Songxiang 227 Dec 28, 2022
Official implementation of the paper 'High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network' in CVPR 2021

LPTN Paper | Supplementary Material | Poster High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network Ji

372 Dec 26, 2022
A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows"

OutliersSlidingWindows A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows" Dataset generatio

PaoloPellizzoni 0 Jan 05, 2022
Deep Learning with PyTorch made easy 🚀 !

Deep Learning with PyTorch made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. It also provides a c

381 Dec 22, 2022
Keras Implementation of Neural Style Transfer from the paper "A Neural Algorithm of Artistic Style"

Neural Style Transfer & Neural Doodles Implementation of Neural Style Transfer from the paper A Neural Algorithm of Artistic Style in Keras 2.0+ INetw

Somshubra Majumdar 2.2k Dec 31, 2022
This is the dataset and code release of the OpenRooms Dataset.

This is the dataset and code release of the OpenRooms Dataset.

Visual Intelligence Lab of UCSD 95 Jan 08, 2023
Invertible conditional GANs for image editing

Invertible Conditional GANs This is the implementation of the IcGAN model proposed in our paper: Invertible Conditional GANs for image editing. Novemb

Guim 278 Dec 12, 2022
Code for "Neural 3D Scene Reconstruction with the Manhattan-world Assumption" CVPR 2022 Oral

News 05/10/2022 To make the comparison on ScanNet easier, we provide all quantitative and qualitative results of baselines here, including COLMAP, COL

ZJU3DV 365 Dec 30, 2022
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

Facebook Research 721 Jan 03, 2023