Text to image synthesis using thought vectors

Overview

Text To Image Synthesis Using Thought Vectors

Join the chat at https://gitter.im/text-to-image/Lobby

This is an experimental tensorflow implementation of synthesizing images from captions using Skip Thought Vectors. The images are synthesized using the GAN-CLS Algorithm from the paper Generative Adversarial Text-to-Image Synthesis. This implementation is built on top of the excellent DCGAN in Tensorflow. The following is the model architecture. The blue bars represent the Skip Thought Vectors for the captions.

Model architecture

Image Source : Generative Adversarial Text-to-Image Synthesis Paper

Requirements

Datasets

  • All the steps below for downloading the datasets and models can be performed automatically by running python download_datasets.py. Several gigabytes of files will be downloaded and extracted.
  • The model is currently trained on the flowers dataset. Download the images from this link and save them in Data/flowers/jpg. Also download the captions from this link. Extract the archive, copy the text_c10 folder and paste it in Data/flowers.
  • Download the pretrained models and vocabulary for skip thought vectors as per the instructions given here. Save the downloaded files in Data/skipthoughts.
  • Make empty directories in Data, Data/samples, Data/val_samples and Data/Models. They will be used for sampling the generated images and saving the trained models.

Usage

  • Data Processing : Extract the skip thought vectors for the flowers data set using :
python data_loader.py --data_set="flowers"
  • Training

    • Basic usage python train.py --data_set="flowers"
    • Options
      • z_dim: Noise Dimension. Default is 100.
      • t_dim: Text feature dimension. Default is 256.
      • batch_size: Batch Size. Default is 64.
      • image_size: Image dimension. Default is 64.
      • gf_dim: Number of conv in the first layer generator. Default is 64.
      • df_dim: Number of conv in the first layer discriminator. Default is 64.
      • gfc_dim: Dimension of gen untis for for fully connected layer. Default is 1024.
      • caption_vector_length: Length of the caption vector. Default is 1024.
      • data_dir: Data Directory. Default is Data/.
      • learning_rate: Learning Rate. Default is 0.0002.
      • beta1: Momentum for adam update. Default is 0.5.
      • epochs: Max number of epochs. Default is 600.
      • resume_model: Resume training from a pretrained model path.
      • data_set: Data Set to train on. Default is flowers.
  • Generating Images from Captions

    • Write the captions in text file, and save it as Data/sample_captions.txt. Generate the skip thought vectors for these captions using:
    python generate_thought_vectors.py --caption_file="Data/sample_captions.txt"
    
    • Generate the Images for the thought vectors using:
    python generate_images.py --model_path=<path to the trained model> --n_images=8
    

    n_images specifies the number of images to be generated per caption. The generated images will be saved in Data/val_samples/. python generate_images.py --help for more options.

Sample Images Generated

Following are the images generated by the generative model from the captions.

Caption Generated Images
the flower shown has yellow anther red pistil and bright red petals
this flower has petals that are yellow, white and purple and has dark lines
the petals on this flower are white with a yellow center
this flower has a lot of small round pink petals.
this flower is orange in color, and has petals that are ruffled and rounded.
the flower has yellow petals and the center of it is brown

Implementation Details

  • Only the uni-skip vectors from the skip thought vectors are used. I have not tried training the model with combine-skip vectors.
  • The model was trained for around 200 epochs on a GPU. This took roughly 2-3 days.
  • The images generated are 64 x 64 in dimension.
  • While processing the batches before training, the images are flipped horizontally with a probability of 0.5.
  • The train-val split is 0.75.

Pre-trained Models

  • Download the pretrained model from here and save it in Data/Models. Use this path for generating the images.

TODO

  • Train the model on the MS-COCO data set, and generate more generic images.
  • Try different embedding options for captions(other than skip thought vectors). Also try to train the caption embedding RNN along with the GAN-CLS model.

References

Alternate Implementations

License

MIT

Owner
Paarth Neekhara
PhD student, Computer Science, UCSD
Paarth Neekhara
The Curious Layperson: Fine-Grained Image Recognition without Expert Labels (BMVC 2021)

The Curious Layperson: Fine-Grained Image Recognition without Expert Labels Subhabrata Choudhury, Iro Laina, Christian Rupprecht, Andrea Vedaldi Code

Subhabrata Choudhury 18 Dec 27, 2022
This repository contains the entire code for our work "Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid Precoding"

Two-Timescale-DNN Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid Precoding This repository contains the entire code for our work

QiyuHu 3 Mar 07, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

76 Jan 03, 2023
An implementation of IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification

IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification The repostiory consists of the code, results and data set links for

12 Dec 26, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
Constructing interpretable quadratic accuracy predictors to serve as an objective function for an IQCQP problem that represents NAS under latency constraints and solve it with efficient algorithms.

IQNAS: Interpretable Integer Quadratic programming Neural Architecture Search Realistic use of neural networks often requires adhering to multiple con

0 Oct 24, 2021
A pytorch implementation of Pytorch-Sketch-RNN

Pytorch-Sketch-RNN A pytorch implementation of https://arxiv.org/abs/1704.03477 In order to draw other things than cats, you will find more drawing da

Alexis David Jacq 172 Dec 12, 2022
The project was to detect traffic signs, based on the Megengine framework.

trafficsign 赛题 旷视AI智慧交通开源赛道,初赛1/177,复赛1/12。 本赛题为复杂场景的交通标志检测,对五种交通标志进行识别。 框架 megengine 算法方案 网络框架 atss + resnext101_32x8d 训练阶段 图片尺寸 最终提交版本输入图片尺寸为(1500,2

20 Dec 02, 2022
Keras community contributions

keras-contrib : Keras community contributions Keras-contrib is deprecated. Use TensorFlow Addons. The future of Keras-contrib: We're migrating to tens

Keras 1.6k Dec 21, 2022
Implementation of Geometric Vector Perceptron, a simple circuit for 3d rotation equivariance for learning over large biomolecules, in Pytorch. Idea proposed and accepted at ICLR 2021

Geometric Vector Perceptron Implementation of Geometric Vector Perceptron, a simple circuit with 3d rotation equivariance for learning over large biom

Phil Wang 59 Nov 24, 2022
Run PowerShell command without invoking powershell.exe

PowerLessShell PowerLessShell rely on MSBuild.exe to remotely execute PowerShell scripts and commands without spawning powershell.exe. You can also ex

Mr.Un1k0d3r 1.2k Jan 03, 2023
Code for Multimodal Neural SLAM for Interactive Instruction Following

Code for Multimodal Neural SLAM for Interactive Instruction Following Code structure The code is adapted from E.T. and most training as well as data p

7 Dec 07, 2022
TeST: Temporal-Stable Thresholding for Semi-supervised Learning

TeST: Temporal-Stable Thresholding for Semi-supervised Learning TeST Illustration Semi-supervised learning (SSL) offers an effective method for large-

Xiong Weiyu 1 Jul 14, 2022
Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021.

SphereRPN Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021. Authors: Th

Thang Vu 15 Dec 02, 2022
TorchX: A PyTorch Extension Library for More Efficient Deep Learning

TorchX TorchX: A PyTorch Extension Library for More Efficient Deep Learning. @misc{torchx, author = {Ansheng You and Changxu Wang}, title = {T

Donny You 8 May 28, 2022
Python package provinding tools for artistic interactive applications using AI

Documentation redrawing Python package provinding tools for artistic interactive applications using AI Created by ReDrawing Campinas team for the Open

ReDrawing Campinas 1 Sep 30, 2021
Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. CVPR 2018

Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning Tensorflow code and models for the paper: Large Scale Fine-Grained Categ

Yin Cui 187 Oct 01, 2022
Official PyTorch implementation of "Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks" (AAAI 2022)

Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks This is the code for reproducing the results of th

2 Dec 27, 2021
Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

causal-bald | Abstract | Installation | Example | Citation | Reproducing Results DUE An implementation of the methods presented in Causal-BALD: Deep B

OATML 13 Oct 07, 2022
A library for building and serving multi-node distributed faiss indices.

About Distributed faiss index service. A lightweight library that lets you work with FAISS indexes which don't fit into a single server memory. It fol

Meta Research 170 Dec 30, 2022