Text to image synthesis using thought vectors

Overview

Text To Image Synthesis Using Thought Vectors

Join the chat at https://gitter.im/text-to-image/Lobby

This is an experimental tensorflow implementation of synthesizing images from captions using Skip Thought Vectors. The images are synthesized using the GAN-CLS Algorithm from the paper Generative Adversarial Text-to-Image Synthesis. This implementation is built on top of the excellent DCGAN in Tensorflow. The following is the model architecture. The blue bars represent the Skip Thought Vectors for the captions.

Model architecture

Image Source : Generative Adversarial Text-to-Image Synthesis Paper

Requirements

Datasets

  • All the steps below for downloading the datasets and models can be performed automatically by running python download_datasets.py. Several gigabytes of files will be downloaded and extracted.
  • The model is currently trained on the flowers dataset. Download the images from this link and save them in Data/flowers/jpg. Also download the captions from this link. Extract the archive, copy the text_c10 folder and paste it in Data/flowers.
  • Download the pretrained models and vocabulary for skip thought vectors as per the instructions given here. Save the downloaded files in Data/skipthoughts.
  • Make empty directories in Data, Data/samples, Data/val_samples and Data/Models. They will be used for sampling the generated images and saving the trained models.

Usage

  • Data Processing : Extract the skip thought vectors for the flowers data set using :
python data_loader.py --data_set="flowers"
  • Training

    • Basic usage python train.py --data_set="flowers"
    • Options
      • z_dim: Noise Dimension. Default is 100.
      • t_dim: Text feature dimension. Default is 256.
      • batch_size: Batch Size. Default is 64.
      • image_size: Image dimension. Default is 64.
      • gf_dim: Number of conv in the first layer generator. Default is 64.
      • df_dim: Number of conv in the first layer discriminator. Default is 64.
      • gfc_dim: Dimension of gen untis for for fully connected layer. Default is 1024.
      • caption_vector_length: Length of the caption vector. Default is 1024.
      • data_dir: Data Directory. Default is Data/.
      • learning_rate: Learning Rate. Default is 0.0002.
      • beta1: Momentum for adam update. Default is 0.5.
      • epochs: Max number of epochs. Default is 600.
      • resume_model: Resume training from a pretrained model path.
      • data_set: Data Set to train on. Default is flowers.
  • Generating Images from Captions

    • Write the captions in text file, and save it as Data/sample_captions.txt. Generate the skip thought vectors for these captions using:
    python generate_thought_vectors.py --caption_file="Data/sample_captions.txt"
    
    • Generate the Images for the thought vectors using:
    python generate_images.py --model_path=<path to the trained model> --n_images=8
    

    n_images specifies the number of images to be generated per caption. The generated images will be saved in Data/val_samples/. python generate_images.py --help for more options.

Sample Images Generated

Following are the images generated by the generative model from the captions.

Caption Generated Images
the flower shown has yellow anther red pistil and bright red petals
this flower has petals that are yellow, white and purple and has dark lines
the petals on this flower are white with a yellow center
this flower has a lot of small round pink petals.
this flower is orange in color, and has petals that are ruffled and rounded.
the flower has yellow petals and the center of it is brown

Implementation Details

  • Only the uni-skip vectors from the skip thought vectors are used. I have not tried training the model with combine-skip vectors.
  • The model was trained for around 200 epochs on a GPU. This took roughly 2-3 days.
  • The images generated are 64 x 64 in dimension.
  • While processing the batches before training, the images are flipped horizontally with a probability of 0.5.
  • The train-val split is 0.75.

Pre-trained Models

  • Download the pretrained model from here and save it in Data/Models. Use this path for generating the images.

TODO

  • Train the model on the MS-COCO data set, and generate more generic images.
  • Try different embedding options for captions(other than skip thought vectors). Also try to train the caption embedding RNN along with the GAN-CLS model.

References

Alternate Implementations

License

MIT

Owner
Paarth Neekhara
PhD student, Computer Science, UCSD
Paarth Neekhara
Code and training data for our ECCV 2016 paper on Unsupervised Learning

Shuffle and Learn (Shuffle Tuple) Created by Ishan Misra Based on the ECCV 2016 Paper - "Shuffle and Learn: Unsupervised Learning using Temporal Order

Ishan Misra 44 Dec 08, 2021
Bot developed in Python that automates races in pegaxy.

español | português About it: This is a fork from pega-racing-bot. This bot, developed in Python, is to automate races in pegaxy. The game developers

4 Apr 08, 2022
Official implementation of Self-supervised Image-to-text and Text-to-image Synthesis

Self-supervised Image-to-text and Text-to-image Synthesis This is the official implementation of Self-supervised Image-to-text and Text-to-image Synth

6 Jul 31, 2022
NovelD: A Simple yet Effective Exploration Criterion

NovelD: A Simple yet Effective Exploration Criterion Intro This is an implementation of the method proposed in NovelD: A Simple yet Effective Explorat

29 Dec 05, 2022
A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Hyunsoo Cho 1 Dec 20, 2021
Neural Logic Inductive Learning

Neural Logic Inductive Learning This is the implementation of the Neural Logic Inductive Learning model (NLIL) proposed in the ICLR 2020 paper: Learn

36 Nov 28, 2022
TensorFlow ROCm port

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

ROCm Software Platform 622 Jan 09, 2023
[CVPR 2022 Oral] Rethinking Minimal Sufficient Representation in Contrastive Learning

Rethinking Minimal Sufficient Representation in Contrastive Learning PyTorch implementation of Rethinking Minimal Sufficient Representation in Contras

36 Nov 23, 2022
salabim - discrete event simulation in Python

Object oriented discrete event simulation and animation in Python. Includes process control features, resources, queues, monitors. statistical distrib

181 Dec 21, 2022
Populating 3D Scenes by Learning Human-Scene Interaction https://posa.is.tue.mpg.de/

Populating 3D Scenes by Learning Human-Scene Interaction [Project Page] [Paper] License Software Copyright License for non-commercial scientific resea

Mohamed Hassan 81 Nov 08, 2022
This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack".

Generative Dynamic Patch Attack This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack". Requirements PyTo

Xiang Li 8 Nov 17, 2022
An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding, top-down-bottom-up, and attention (consensus between columns)

GLOM - Pytorch (wip) An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding,

Phil Wang 173 Dec 14, 2022
Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems.

CottonWeeds Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems. requirements pytorch torchsumma

Dong Chen 8 Jun 07, 2022
PyTorch implementation of ENet

PyTorch-ENet PyTorch (v1.1.0) implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from the lua-torc

David Silva 333 Dec 29, 2022
Code implementation of Data Efficient Stagewise Knowledge Distillation paper.

Data Efficient Stagewise Knowledge Distillation Table of Contents Data Efficient Stagewise Knowledge Distillation Table of Contents Requirements Image

IvLabs 112 Dec 02, 2022
Code and datasets for the paper "Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction" (RA-L, 2021)

Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction This is the code for the paper Combining E

Robotics and Perception Group 69 Dec 26, 2022
Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.

Kaggle-titanic This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this reposito

Andrew Conti 800 Dec 15, 2022
UniLM AI - Large-scale Self-supervised Pre-training across Tasks, Languages, and Modalities

Pre-trained (foundation) models across tasks (understanding, generation and translation), languages (100+ languages), and modalities (language, image, audio, vision + language, audio + language, etc.

Microsoft 7.6k Jan 01, 2023
PyTorch implementation of Pay Attention to MLPs

gMLP PyTorch implementation of Pay Attention to MLPs. Quickstart Clone this repository. git clone https://github.com/jaketae/g-mlp.git Navigate to th

Jake Tae 34 Dec 13, 2022
Offline Multi-Agent Reinforcement Learning Implementations: Solving Overcooked Game with Data-Driven Method

Overcooked-AI We suppose to apply traditional offline reinforcement learning technique to multi-agent algorithm. In this repository, we implemented be

Baek In-Chang 14 Sep 16, 2022